QUASI-CLASSICAL LIMIT OF A SPIN COUPLED TO A RESERVOIR

Michele Correggi

with M. Falconi, M. Fantechi (Polimi) and M. Merkli (MUN)

27/11/2024

QUASI-CLASSICAL SPIN + RESERVOIR

NexT Gen

OUTLINE

- Introduction:
 - Spin-boson model [CFFM,FM] describing a spin interacting with a bosonic field in the quasi-classical regime [CF,CFO1-2].
- Main result [CFFM]:
 - Derivation of the effective dynamics for the small system;
 - Analysis of decoherence and markovianity in the energy preserving case;
 - Energy exchange case.
- **③** Future perspectives [CFF].

MAIN REFERENCES

- [CF] M.C., M. FALCONI, Ann. H. Poincaré 19 (2018);
- [CFFM] M.C., M. FALCONI, M. FANTECHI, M. MERKLI, arXiv:2408.02515;
- [CFO1] M.C., M. FALCONI, M. OLIVIERI, J. Eur. Math. Soc. 25 (2023);
- [CFO2] M.C., M. FALCONI, M. OLIVIERI, Anal. PDE 16 (2023);
- [CFF] M.C., M. FALCONI, M. FANTECHI, in preparation.
- [FM] M. FANTECHI, M. MERKLI, preprint arXiv:2409.15850;

INTRODUCTION

Open Quantum System (I)

- A *small* quantum systems *S* interacts with a *large* (quasi-classical) reservoir or environment *R*;
- We are interested in the effective behavior of *S* when the reservoir's degrees of freedom are traced out.

OPEN QUANTUM SYSTEM (II)

POLITECNICO | DIPARTIMENTO MILANO 1863 | DI MATEMATICA DIPARTIMENTO DI ECCELLENZA 2023-2027

- Space of states $\mathscr{H} = \mathscr{H}_{\mathcal{S}} \otimes \mathscr{H}_{\mathcal{R}}$;
- Hamiltonian

$$H = H_{\mathcal{S}} \otimes \mathbb{1} + \mathbb{1} \otimes H_{\mathcal{R}} + H_I.$$

Effective dynamics

Given an initial state $\rho \in \mathscr{L}^1_{+,1}(\mathscr{H})$, the reduced density matrix is

$$\gamma(t) = \operatorname{tr}_{\mathcal{R}}\left(e^{-itH}\rho e^{itH}\right), \qquad t \in \mathbb{R}.$$

LARGE-TIME BEHAVIOR

The goal is to study the behavior of $\gamma(t)$ (and in particular its off-diagonal part) for large times and for different initial states ρ .

M. Correggi (Polimi) Quasi-Classical Spin + Reservoir

OPEN QUANTUM SYSTEM (III)

• Space of states $\mathscr{H} = \mathscr{H}_{\mathcal{S}} \otimes \mathscr{H}_{\mathcal{R}}$;

•
$$H = H_{\mathcal{S}} \otimes \mathbb{1} + \mathbb{1} \otimes H_{\mathcal{R}} + H_I$$
:

•
$$\gamma(t) = \operatorname{tr}_{\mathcal{R}} \left(e^{-itH} \rho e^{itH} \right).$$

MARKOVIAN APPROXIMATION

- In the weak coupling approximation (a.k.a. Van Hove regime), $H_I = \lambda V$, for some small $|\lambda| \ll 1$;
- For times $t \lesssim \frac{1}{\lambda^2}$, the effective dynamics is given by a CPTP map with Linbladian generator [Davies '74];
- Under suitable assumptions on the model, the Markovian approximation can be proven to hold uniformly in time [MERKLI '22].

Is it possible to go *beyond* the Markovian approximation?

Spin-Boson Model (I)

• Space of states $\mathscr{H} = \mathscr{H}_{\mathcal{S}} \otimes \mathscr{H}_{\mathcal{R}}$;

•
$$H = H_{\mathcal{S}} \otimes \mathbb{1} + \mathbb{1} \otimes H_{\mathcal{R}} + H_I$$
:

•
$$\gamma(t) = \operatorname{tr}_{\mathcal{R}} \left(e^{-itH} \rho e^{itH} \right).$$

Small system ${\cal S}$

• Two-level system
$$\mathscr{H}_{\mathcal{S}} = \mathbb{C}^2$$
;

$$\phi \ H_{\mathcal{S}} = rac{1}{2}\omega_0\sigma_z$$
, with $\omega_0 > 0$ and $\sigma_z = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$ the 3rd Pauli matrix.

Reservoir \mathcal{R}

• Bosonic quantum field $\mathscr{H}_{\mathcal{R}} = \Gamma_{s}(L^{2}(\mathbb{R}^{3})) = \bigoplus_{n=0}^{+\infty} L^{2}(\mathbb{R}^{3})^{\otimes_{s} n}$;

•
$$H_{\mathcal{R}} = \mathrm{d}\Gamma(\omega) = \int_{\mathbb{R}^3} \mathrm{d}\mathbf{k} \,\omega(\mathbf{k}) a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}$$
, with dispersion relation $\omega(\mathbf{k}) \ge 0$.

Spin-Boson Model (II)

• Space of states $\mathscr{H} = \mathscr{H}_{\mathcal{S}} \otimes \mathscr{H}_{\mathcal{R}}$;

•
$$H = H_{\mathcal{S}} \otimes \mathbb{1} + \mathbb{1} \otimes H_{\mathcal{R}} + H_I$$
:

•
$$\gamma(t) = \operatorname{tr}_{\mathcal{R}} \left(e^{-itH} \rho e^{itH} \right).$$

INTERACTION

Linear coupling

$$H_I = \lambda \sqrt{\varepsilon} G \otimes \varphi(g).$$

- $\lambda \in \mathbb{R}$ is a coupling parameter;
- $0 < \varepsilon \leqslant 1$ is a quasi-classical parameter interpolating between quantum ($\varepsilon = 1$) and classical ($\varepsilon = 0$) reservoirs;
- $G \in \mathscr{B}(\mathbb{C}^2)$ is self-adjoint;
- field operator $\varphi(g) = \frac{1}{\sqrt{2}} [a^{\dagger}(g) + a(g)]$ with form factor $g \in L^2(\mathbb{R}^3)$.

QUASI-CLASSICAL SCALING (I)

 $\mathscr{H} = \mathbb{C}^2 \otimes \Gamma_{\mathrm{s}}(L^2(\mathbb{R}^3)), \qquad H = \frac{1}{2}\omega_0\sigma_z + \mathrm{d}\Gamma(\omega) + \lambda\sqrt{\varepsilon}G \otimes \varphi(g).$

QUASI-CLASSICAL INITIAL STATES

We want to consider initial states $ho \in \mathscr{L}^1_{+,1}(\mathscr{H})$ of the form

 $\rho = \gamma \otimes \zeta_{\varepsilon},$

where the field's state contains a macroscopic average number of excitations $\bar{N} \sim \frac{1}{\varepsilon}$ as $\varepsilon \to 0$: with $N = d\Gamma(1)$,

 $\operatorname{tr}_{\mathcal{R}}(N\zeta_{\varepsilon}) \sim \frac{1}{\varepsilon}.$

This is a semiclassical regime for the field since

$$\left[a(g), a^{\dagger}(g)\right] = 1 \ll \bar{N} \sim \frac{1}{\varepsilon}.$$

QUASI-CLASSICAL SCALING (II)

 $\mathscr{H} = \mathbb{C}^2 \otimes \Gamma_{\mathrm{s}}(L^2(\mathbb{R}^3)), \qquad H = \frac{1}{2}\omega_0\sigma_z + \mathrm{d}\Gamma(\omega) + \lambda\sqrt{\varepsilon}G \otimes \varphi(g).$

QUASI-CLASSICAL VARIABLES

To make the emergence of the classical behavior more apparent, it is convenient to rescale all field's observable

$$a^{\sharp}(g) \longrightarrow a^{\sharp}_{\varepsilon}(g) := a^{\sharp}(\sqrt{\varepsilon}g) = \sqrt{\varepsilon}a^{\sharp}(g),$$

(and consequently $arphi_arepsilon(g):=arphi(\sqrt{arepsilon}g))$, so that

 $\lim_{\varepsilon \to 0} \operatorname{tr}_{\mathcal{R}} \left(A_{\varepsilon} B_{\varepsilon} \right) = \lim_{\varepsilon \to 0} \operatorname{tr}_{\mathcal{R}} \left(B_{\varepsilon} A_{\varepsilon} \right) \quad \Longleftrightarrow \quad [A_{\varepsilon}, B_{\varepsilon}] = \mathcal{O}(\varepsilon),$

for any polynomials $A_{\varepsilon}, B_{\varepsilon}$ in a_{ε}^{\sharp} . The Hamiltonian becomes $H = H_0 + \lambda G \otimes \varphi_{\varepsilon}(g)$ where the free part reads

$$H_0 = \frac{1}{2}\omega_0\sigma_z + \frac{1}{\varepsilon}\mathrm{d}\Gamma_\varepsilon(\omega)$$

Initial States (I)

 $\mathscr{H} = \mathbb{C}^2 \otimes \Gamma_{\mathrm{s}}(L^2(\mathbb{R}^3)), \qquad \rho(0) = \gamma \otimes \zeta_{\varepsilon}.$

QUASI-CLASSICAL STATES

- The classical counterpart of field's states ζ_{ε} are probability measures $\mathscr{M}(L^2(\mathbb{R}^3))$ over the one-excitation space $L^2(\mathbb{R}^3)$;
- The generating functional $\chi_{\varepsilon}: L^2(\mathbb{R}^3) \to \mathbb{C}$ associated to ζ_{ε} is

 $\chi_{\varepsilon}(f) := \operatorname{tr}_{\mathcal{R}} \left(W_{\varepsilon}(f) \zeta_{\varepsilon} \right), \qquad W_{\varepsilon}(f) = e^{i\varphi_{\varepsilon}(f)}, f \in L^{2}(\mathbb{R}^{3}).$

QUASI-CLASSICAL CONVERGENCE

We say that
$$\zeta_arepsilon \xrightarrow{ ext{qc}} \mu \in \mathscr{M}_{ ext{cyl}}(L^2(\mathbb{R}^3))$$
 if

$$\chi_{\varepsilon}(f) \xrightarrow[\varepsilon \to 0]{qc} \int_{L^2(\mathbb{R}^3)} \mathrm{d}\mu(g) \, e^{i\sqrt{2}\Re\langle g|f \rangle}.$$

 $\text{If, for some } \delta > 0, \ \text{tr}_{\mathcal{R}}\left(N_{\varepsilon}^{\delta}\zeta_{\varepsilon}\right) \leqslant C, \ \text{then } \mu \in \mathscr{M}(L^{2}(\mathbb{R}^{3})).$

INITIAL STATES (II)

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad \chi_{\varepsilon}(f) := \operatorname{tr}_{\mathcal{R}} \left(e^{i\varphi_{\varepsilon}(f)} \zeta_{\varepsilon} \right).$$

(SUPERPOSITION OF) COHERENT STATES

• Coherent states of the form

$$\Psi_{f_0} := e^{\frac{\sqrt{2}\varphi_{\varepsilon}(f_0)}{\sqrt{\varepsilon}}} \Omega = W_{\varepsilon} \left(-\frac{\sqrt{2}if_0}{\sqrt{\varepsilon}} \right) \Omega,$$

have a simple counterpart: $\chi_arepsilon(f)=e^{-rac{1}{4}arepsilon\|f\|^2}e^{i\sqrt{2}\Re\langle f_0|f
angle}$ so that

$$|\Psi_{f_0}\rangle \langle \Psi_{f_0}| \xrightarrow[\varepsilon \to 0]{\operatorname{qc}} \delta(\cdot - f_0).$$

• More in general for a superposition of coherent states

$$\zeta_{\varepsilon} = \int_{L^2(\mathbb{R}^3)} \mathrm{d}\mu_0(f) \left| \Psi_f \right\rangle \left\langle \Psi_f \right|,$$

for some $\mu_0 \in \mathscr{M}(L^2(\mathbb{R}^3))$, then

$$\zeta_{\varepsilon} \xrightarrow[\varepsilon \to 0]{\operatorname{qc}} \mu_0.$$

INITIAL STATES (III)

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad \chi_{\varepsilon}(f) := \operatorname{tr}_{\mathcal{R}} \left(e^{i\varphi_{\varepsilon}(f)} \zeta_{\varepsilon} \right).$$

Bose-Einstein condensate

• For a given one-excitation state $f_0 \in L^2(\mathbb{R}^3)$, a Bose-Einstein condensate is described by the product state $f_0 \otimes \cdots \otimes f_0$ or

$$\psi_{\varepsilon} = \frac{a^{\dagger}(f_0)^n}{\sqrt{n!}}\Omega, \qquad n = \lfloor 1/\varepsilon \rfloor.$$

• The classical measure is the uniform over the sphere S^1 :

$$\zeta_{\varepsilon} \xrightarrow[\varepsilon \to 0]{qc} \int_{0}^{2\pi} \mathrm{d}\theta \,\,\delta\left(\cdot \,-f_0 e^{-i\theta}\right).$$

Proof.

$$\chi_{\varepsilon}(f) = L_n \left(\frac{1}{2}\varepsilon |\langle f_0 | f \rangle|^2\right) \langle \Omega | W_{\varepsilon}(f) \Omega \rangle \to J_0 \left(\sqrt{2} |\langle f_0 | f \rangle|\right), \text{ but the}$$

integral form of Bessel functions yields
$$\int_{-\pi}^{\pi} \frac{\mathrm{d}\theta}{2\pi} e^{i\sqrt{2}\Re\left(e^{i\theta}\langle f_0 | f \rangle\right)}.$$

M. Correggi (Polimi)

QUASI-CLASSICAL SPIN + RESERVOIR

27/11/2024

10/25

INITIAL STATES (IV)

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad \chi_{\varepsilon}(f) := \operatorname{tr}_{\mathcal{R}} \left(e^{i\varphi_{\varepsilon}(f)} \zeta_{\varepsilon} \right).$$

THERMAL STATE

 \bullet The thermal equilibrium state of ${\cal R}$ is identified by

$$\left\langle a^{\dagger}(f)a(g)\right\rangle _{\beta} = \int_{\mathbb{R}^{3}} \mathrm{d}\mathbf{k} \ \frac{1}{e^{\beta\omega(k)} - 1}g^{*}(\mathbf{k})f(\mathbf{k}).$$

- To obtain a non-trivial limit we are forced to rescale the temperature and set $\beta = \varepsilon \beta'$, for β' independent of ε (high temperature regime).
- $\zeta_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \mu \in \mathscr{M}_{cyl}(L^2(\mathbb{R}^3))$ gaussian measure with zero mean and covariance $\beta'\omega$ (in ∞ dimension the gaussian measure is cylindrical).

Proof.

$$\chi_{\varepsilon}(f) = e^{-\frac{1}{4}\varepsilon\langle f|\coth(\varepsilon\beta'\omega/2)f\rangle} \xrightarrow[\varepsilon \to 0]{} e^{-\frac{1}{2\beta'}\langle f|\omega^{-1}f\rangle}$$

M. Correggi (Polimi)

27/11/2024

11/25

MAIN GOALS

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad H = \frac{1}{2}\omega_0 \sigma_z + \frac{1}{\varepsilon} \mathrm{d}\Gamma_{\varepsilon}(\omega) + \lambda \sqrt{\varepsilon} G \otimes \varphi(g).$$

MAIN GOALS

Characterize the (large-time) effective dynamics of the spin S, i.e., the behavior for $t \to +\infty$ of

$$\gamma_{\varepsilon}(t) = \operatorname{tr}_{\mathcal{R}} \left[e^{-itH(\varepsilon)} (\gamma \otimes \zeta_{\varepsilon}) e^{itH(\varepsilon)} \right],$$

for $\varepsilon \in (0, 1]$ and as $\varepsilon \to 0$, and for different field's initial states ζ_{ε} – COHerent superposition, Bose-Einstein Condensate, THerMal state. In particular, we aim to

• investigate decoherence, i.e., suppression of interference effects;

• study the markovianity of the effective dynamics, i.e., how much distinguishability between states gets worse along the dynamics.

EFFECTIVE DYNAMICS

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad H = \frac{1}{2}\omega_0 \sigma_z + \frac{1}{\varepsilon} \mathrm{d}\Gamma_{\varepsilon}(\omega) + \lambda G \otimes \varphi_{\varepsilon}(g).$$

THEOREM (MC, FALCONI, OLIVIERI '23)

Let $\zeta_{\varepsilon} \in \mathscr{L}^{1}_{+,1}(L^{2}(\mathbb{R}^{2}))$ be a family of field's states such that, for some $\delta > 0$, $\operatorname{tr}_{\mathcal{R}}(N_{\varepsilon}^{\delta}\zeta_{\varepsilon}) \leqslant C$, then \exists a probability measure $\mu_{0} \in \mathscr{M}(L^{2}(\mathbb{R}^{2}))$ and a subsequence $\{\varepsilon_{k}\}_{k\in\mathbb{N}}, \varepsilon_{k} \xrightarrow[k \to +\infty]{} 0$, satisfying $\zeta_{\varepsilon_{k}} \xrightarrow[k \to +\infty]{} \mu_{0}$ and

$$\lim_{k \to +\infty} \gamma_{\varepsilon_k}(t) = \gamma_0(t) := \int_{L^2(\mathbb{R}^3)} \mathrm{d}\mu_0(f) \, U_t(f) \gamma U_t^{\dagger}(f) \, d\mu_0(f) \, U_t(f) \, d\mu_0(f) \, U_t(f) \, d\mu_0(f) \, d$$

where $U_t(f) := U_{t,0}(f)$ is the two-parameter unitary group

$$i\partial_t U_{t,s}(f) = \left(H_{\mathcal{S}} + \sqrt{2}\lambda G \,\Re \left\langle e^{-it\omega} f \,\middle|\, g \right\rangle \right) U_{t,s}(f), \qquad U_{t,t}(f) = \mathbb{1}.$$

ENERGY PRESERVING MODEL

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad H = \frac{1}{2}\omega_0 \sigma_z + \frac{1}{\varepsilon} \mathrm{d}\Gamma_{\varepsilon}(\omega) + \frac{1}{2}\lambda \sigma_z \otimes \varphi_{\varepsilon}(g).$$

EFFECTIVE DYNAMICS

- The effective dynamics is explicitly solvable $\forall \varepsilon \in (0, 1]$ in the basis $|1\rangle, |2\rangle$ s.t. $\sigma_z |1\rangle = |1\rangle, \sigma_z |2\rangle = -|2\rangle$: we set $[\gamma(t)]_{ij} := \langle i | \gamma(t) | j \rangle$;
- The diagonal terms are constant: $[\gamma(t)]_{ii} = \gamma_{ii}$, $\forall i$ and $\forall t \in \mathcal{R}$.

PROPOSITION (EFFECTIVE DYNAMICS)

For all $\varepsilon > 0$ and for all $t \ge 0$,

$$[\gamma_{\varepsilon}(t)]_{12} = e^{-i\omega_0 t} D_{\varepsilon}(t) \gamma_{12},$$

where the decoherence function is given by (with generating functional χ_{ε})

$$D_{\varepsilon}(t) = \chi_{\varepsilon} \left(\lambda g_t \right), \qquad g_t(\mathbf{k}) := \frac{1 - e^{i\omega(\mathbf{k})t}}{i\omega(\mathbf{k})} g(\mathbf{k}).$$

EPM DECOHERENCE (I)

2. . (1-)+

$$\left[\gamma_{\varepsilon}(t)\right]_{12} = e^{-i\omega_0 t} D_{\varepsilon}(t) \gamma_{12}, \qquad D_{\varepsilon}(t) = \chi_{\varepsilon}\left(\lambda g_t\right), \quad g_t(\mathbf{k}) \coloneqq \frac{1 - e^{i\omega(\mathbf{k})t}}{i\omega(\mathbf{k})} g(\mathbf{k}).$$

DECOHERENCE FUNCTION

The decoherence function can be explicitly computed:

• (COH)

$$D_{\varepsilon}(t) = e^{-\frac{1}{4}\varepsilon\lambda^2 \|g_t\|^2} \int_{L^2(\mathbb{R}^3)} \mathrm{d}\mu_0(f) \, e^{i\sqrt{2}\lambda\Re\langle f|g_t\rangle}$$

• (BEC) with
$$n = \lfloor \frac{1}{\varepsilon} \rfloor$$
,
 $D_{\varepsilon}(t) = e^{-\frac{1}{4}\varepsilon\lambda^{2}||g_{t}||^{2}} L_{n}\left(\frac{1}{2}\varepsilon\lambda^{2} |\langle f_{0}|g_{t}\rangle|^{2}\right),$
 $D_{0}(t) = J_{0}\left(\sqrt{2}|\lambda||\langle f_{0}|g_{t}\rangle|\right) = \int_{-\pi}^{\pi} \frac{\mathrm{d}\theta}{2\pi} e^{i\sqrt{2}\lambda\Re\left(e^{i\theta}\langle f|g_{t}\rangle\right)};$

• (THM)

$$D_{\varepsilon}(t) = e^{-\frac{1}{4}\varepsilon\lambda^2 \langle g_t | \operatorname{coth}(\beta' \varepsilon \omega/2) g_t \rangle}.$$

EPM DECOHERENCE (II)

 $\left[\gamma_{\varepsilon}(t)\right]_{12} = e^{-i\omega_0 t} D_{\varepsilon}(t)\gamma_{12}, \qquad D_{\varepsilon}(t) = \chi_{\varepsilon}\left(\lambda g_t\right), \quad g_t(\mathbf{k}) := \frac{1 - e^{i\omega(\mathbf{k})t}}{i\omega(\mathbf{k})} g(\mathbf{k}).$

PROPOSITION (DECOHERENCE)

Let $\mathcal{J}(k) = \frac{\pi}{2}k^2 \int_{S^2} d\Sigma(\vartheta, \phi) |g(k, \vartheta, \phi)|^2$ be the spectral density of \mathcal{R} , and assume that $\mathcal{J}(k) \sim k^p$, as $k \to 0^+$, for some $p \in (-1, +\infty)$. Then,

- (COH, BEC) for quantum \mathcal{R} ($\varepsilon > 0$), there is full decoherence: $\lim_{t\to\infty} D_{\varepsilon}(t) = 0;$
- (COH, BEC) for classical \mathcal{R} ($\varepsilon = 0$), there is partial decoherence only: $\lim_{t \to \infty} D_0(t) = D_0(\infty) \neq 0;$
- (THM) For both quantum or classical \mathcal{R} , there is partial decoherence if p > 2, and full decoherence if 0 ; furthermore,

$$\frac{D_{\varepsilon}(t)}{D_0(t)} \propto e^{-\frac{1}{\pi}\Gamma_{\infty}\varepsilon\lambda}.$$

EPM DECOHERENCE (III)

(1.5)

$$\left[\gamma_{\varepsilon}(t)\right]_{12} = e^{-i\omega_0 t} D_{\varepsilon}(t) \gamma_{12}, \qquad D_{\varepsilon}(t) = \chi_{\varepsilon}\left(\lambda g_t\right), \quad g_t(\mathbf{k}) := \frac{1 - e^{i\omega(\mathbf{k})t}}{i\omega(\mathbf{k})} g(\mathbf{k}).$$

(COH) DECOHERENCE

For a single coherent state Ψ_{f_0} , $D_0(t) = 1$, $\forall t \in \mathbb{R}$ (no decoherence), while $D_{\varepsilon}(t) \xrightarrow[t \to +\infty]{} 0$, $\forall \varepsilon > 0$ (full decoherence).

(BEC) DECOHERENCE

Since $D_0(t) = J_0\left(\sqrt{2}|\lambda| |\langle f_0|g_t\rangle|\right) < 1$, there is always decoherence but typically no full decoherence: if $|\langle f_0|\omega^{-1}g\rangle| < +\infty$, then

$$\lim_{t \to \infty} D_0(t) = J_0\left(\sqrt{2}|\lambda| \left| \left\langle f_0 \left| \frac{1}{\omega} g \right\rangle \right| \right),$$

which vanishes only if the argument is a zero of J_0 . Hence, typically there is full decoherence for quantum \mathcal{R} and partial decoherence for classical \mathcal{R} .

EPM MARKOVIANITY

Measure of markovianity

In [LAINO, PIILO, BREUER '10] a quantitative measure of markovianity has been introduced:

- The key idea is that the distinguishability of two quantum states ρ, ν never decreases along a markovian dynamics;
- A measure of how much two states differ is $\|\rho \nu\|_1$;
- One thus defines the measure of markovianity of the effective dynamics as

$$\mathcal{N} = \max_{\rho(0),\nu(0)} \int_{S_+} \mathrm{d}t \,\partial_t \left\| \rho(t) - \nu(t) \right\|_1,$$

where $S_{+} = \{t \ge 0, \partial_t \| \rho(t) - \nu(t) \|_1 > 0\}.$

• In our case $S_+ = \{t \ge 0, \partial_t | D_\varepsilon(t) | > 0\}$ and $\partial_t | D_\varepsilon(t) |$ can be explicitly computed...

Ø MAIN RESULT

EPM MARKOVIANITY – BEC (I)

POLITECNICO | DIPARTIMENTO MILANO 1863 | DI MATEMATICA DIPARTIMENTO DI ECCELLENZA 2023-2027

EPM MARKOVIANITY – BEC (II)

Markovianity

- There are oscillations with decreasing amplitude and frequency depending on the infrared behavior of \mathcal{R} ;
- As ε decreases from $\varepsilon = 1$ (quantum) to $\varepsilon = 0$ (classical), the regions of non-Markovianity stabilize to become ε -independent.

2 Main Result

EPM MARKOVIANITY – THM

MILANO 1863 DI MATEMATICA DIPARTIMENTO DI ECCELLENZA 2023-2027

DIPARTIMENTO

POLITECNICO

QUASI-CLASSICAL SPIN + RESERVOIR

ENERGY EXCHANGE MODEL

$$\rho(0) = \gamma \otimes \zeta_{\varepsilon}, \qquad H = \frac{1}{2}\omega_0 \sigma_z + \frac{1}{\varepsilon} \mathrm{d}\Gamma_{\varepsilon}(\omega) + \lambda \sqrt{\varepsilon} G \otimes \varphi(g).$$

EFFECTIVE DYNAMICS

- The quantum model is no longer diagonalizable nor explicitly solvable;
- The effective quasi-classical dynamics is given by

$$\gamma_0(t) = \int_{L^2(\mathbb{R}^3)} \mathrm{d}\mu_0(f) \, U_t(f) \gamma U_t^{\dagger}(f),$$

where $U_t(f) := U_{t,0}(f)$ is the two-parameter unitary group $i\partial_t U_{t,s}(f) = (H_S + \sqrt{2}\lambda G \alpha_t(f)) U_{t,s}(f), \qquad U_{t,t}(f) = \mathbb{1},$ $\alpha_t(f) = \Re \langle e^{-it\omega} f | g \rangle.$

• Qualitatively, if $\alpha_t(f) \xrightarrow[t \to \infty]{t \to \infty} 0$ (Riemann-Lebesgue lemma), then the interaction becomes small asymptotically (scattering).

EEM SCATTERING (I)

 $i\partial_t U_{t,s}(f) = \left(H_{\mathcal{S}} + \sqrt{2}\lambda G \,\alpha_t(f)\right) U_{t,s}(f), \qquad \alpha_t(f) = \Re \left\langle e^{-it\omega} f \right| g \right\rangle.$

SCATTERING

• Let
$$\Omega_+ = \lim_{t \to +\infty} U_{t,0}^{\dagger} e^{-itH_S}$$
 and Ω_- be the wave operators;

• Set
$$a(f) := \int_0^{\infty} dt |\alpha_t(f)|.$$

• If the conditions $a(f) < +\infty$, $|\lambda| a(f) < 1$, are satisfied by any $f \in \operatorname{supp}(\mu_0)$, the \mathcal{S} effective dynamics is asymptotically free.

PROPOSITION (EXISTENCE OF SCATTERING)

Let $f \in L^2(\mathbb{R}^3)$ be fixed and suppose that $a(f) < +\infty$. Then the wave operators Ω_{\pm} exist. Moreover, if $|\lambda| a(f) < 1$, then Ω_{\pm} are invertible and the scattering operator $S = \Omega_{+}^{-1}\Omega_{-}$ exists.

EEM SCATTERING (II)

$$\gamma_0(t) = \int_{L^2(\mathbb{R}^3)} \mathrm{d}\mu_0(f) \, U_t(f) \gamma U_t^{\dagger}(f), \qquad a(f) := \int_0^{+\infty} \mathrm{d}t \, \left| \Re \left\langle e^{-it\omega} f \right| g \right\rangle \right|.$$

PROPOSITION (STABILITY OF THE FREE DYNAMICS)

$$\textit{Let } \zeta_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \mu_0 \textit{ and } a(f) < +\infty, \forall f \in \text{supp}(\mu_0). \textit{ Then, } \exists C < +\infty \textit{ s.t.}$$

$$\sup_{t\geq 0} \left\|\gamma_0(t) - e^{-itH_{\mathcal{S}}}\gamma e^{itH_{\mathcal{S}}}\right\| \leq C|\lambda|.$$

LEMMA

Let $\omega(k) = |\mathbf{k}|$, with polar coordinates $(k, \Sigma) \in \mathbb{R}^+ \times S^2$. If

• $k \mapsto f(k, \Sigma)g(k, \Sigma)$ is $C^2(\mathbb{R}^+)$ for any Σ ,

• for any Σ , $\begin{cases} f(k,\Sigma)g(k,\Sigma)\sim k^p, & \text{ as }k\to 0, \text{ for some }p>-1,\\ f(k,\Sigma)g(k,\Sigma)\sim k^{-q} & \text{ as }k\to +\infty, \text{ for some }q>2, \end{cases}$

then $a(f) < +\infty$.

EEM NON-SCATTERING

 $i\partial_t U_{t,s}(f) = \left(H_{\mathcal{S}} + \sqrt{2}\lambda G \,\alpha_t(f)\right) U_{t,s}(f), \qquad \alpha_t(f) = \Re \left\langle e^{-it\omega} f \right| g \right\rangle.$

POLARON-TYPE MODELS

- For polarons $\omega(\mathbf{k}) = \omega_{\mathcal{R}}$ and $\alpha_t(f) = \Re e^{i\omega_{\mathcal{R}}t} \langle f|g \rangle$ is time-periodic;
- The effective dynamics is given by a well-known equation describing open quantum systems interacting with classical fields:

$$i\partial_t U_t(f) = \left[\frac{1}{2}\omega_0 \sigma_z + \frac{\lambda}{\sqrt{2}} \langle f | g \rangle \cos(\omega_{\mathcal{R}} t) \sigma_x\right] U_t(f), \qquad U_0(f) = \mathbb{1}.$$

PROPOSITION (EVOLUTION IN PRESENCE OF SYMMETRIES)

Suppose that $\mu_0(A) = \mu_0(-A)$, $\forall A$ measurable and that G is off-diagonal in the σ_z -basis. Then the diagonal and the off-diagonal density matrix elements of $\gamma(t)$ evolve independently. In particular, if γ is diagonal, then so is $\gamma(t)$ for all t, and if γ is off-diagonal, then so is $\gamma(t)$.

FUTURE PERSPECTIVES

- Investigate further the energy exchange model (e.g. for a circularly polarized fields) in the non-scattering regime at least numerically;
- Study more realistic models, e.g., the Caldera-Leggett model, where a quantum trapped particle is linearly coupled to a bosonic field [MC, FALCONI, FANTECHI '2x].

Shank you for the attention!

EPM DECOHERENCE (IV)

2. . (1.) 4

$$[\gamma_{\varepsilon}(t)]_{12} = e^{-i\omega_0 t} D_{\varepsilon}(t) \gamma_{12}, \qquad D_{\varepsilon}(t) = \chi_{\varepsilon} \left(\lambda g_t\right), \quad g_t(\mathbf{k}) := \frac{1 - e^{i\omega(\mathbf{k})t}}{i\omega(\mathbf{k})} g(\mathbf{k}).$$

SKETCH OF THE PROOF

- The key term for decoherence is the exponential factor $e^{-\frac{1}{4}\varepsilon\lambda^2\|g_t\|^2}$;
- With the spectral density $\mathcal{J}(k) = \frac{\pi}{2}k^2 \int_{S^2} d\Sigma(\vartheta, \phi) |g(k, \vartheta, \phi)|^2$, one has, e.g., for $\omega(\mathbf{k}) = |\mathbf{k}|^2$, $\|g_t\|^2 = \frac{4}{\pi} \int_0^{+\infty} dk \, \frac{1 - \cos(kt)}{k^2} \mathcal{J}(k).$

LARGE-TIME ASYMPTOTICS

The $t \to \infty$ asymptotics of $||g_t||^2$ is determined by the infrared behavior of \mathcal{J} as $k \to 0^+$. If $\mathcal{J}(k) = k^p \mathcal{I}(k)$, for some smooth non-vanishing \mathcal{I} , then one can classify all possible cases for $p \in (-1, +\infty)$ [TRUSHECHKIN '23].

EPM DECOHERENCE (V)

 $\left[\gamma_{\varepsilon}(t)\right]_{12} = e^{-i\omega_0 t} D_{\varepsilon}(t)\gamma_{12}, \qquad D_{\varepsilon}(t) = \chi_{\varepsilon}\left(\lambda g_t\right), \quad g_t(\mathbf{k}) := \frac{1 - e^{i\omega(\mathbf{k})t}}{i\omega(\mathbf{k})}g(\mathbf{k}).$

LEMMA

Let $\mathcal{J}(k) = k^p \mathcal{I}(k)$, for some $p \in (-1, +\infty)$ and some $\mathcal{I} \in C^2([0, k_c])$ s.t. $\mathcal{I}(0), \mathcal{I}'(0) \neq 0$. Then, as $t \to \infty$,

$$e^{-\frac{1}{4}\varepsilon\lambda^{2}||g_{t}||^{2}} \sim \begin{cases} e^{-\frac{1}{\pi}\varepsilon\lambda\Gamma_{\infty}}, & p > 1, \\ c_{0}t^{-c_{1}\varepsilon\lambda^{2}}, & p = 1, \\ c_{0}t^{-c_{2}\varepsilon\lambda^{2}}e^{-c_{1}\varepsilon\lambda^{2}t}, & p = 0, \\ c_{0}e^{-c_{1}\varepsilon\lambda^{2}t^{1-p}}, & -1$$

for some $\Gamma_{\infty}, c_1 > 0$ and $c_2 \in \mathcal{R}$ (independent of ε, λ). Furthermore,

$$c_0 = c_0(\varepsilon \lambda^2) > 0, \qquad \lim_{\varepsilon^2 \lambda \to 0} c_0(\varepsilon^2 \lambda) = 1.$$