
Analogies and Disanalogies Between Classical and

Quantum Physical Computation

Michael E. Cuffaro†

†Munich Center for Mathematical Philosophy, LMU Munich
Michael.Cuffaro@lmu.de

November 25, 2024

Politecnico di Milano, Milan, Italy

Powered by LATEX

mailto:Michael.Cuffaro@lmu.de

I. Introduction

What is quantum computing?

• Combines fundamental concepts from two separate sciences:
(1) Computer science and (2) Physics.

1 / 34

What is quantum computing?

• Combines fundamental concepts from two separate sciences:
(1) Computer science and (2) Physics.

• Quantum computing describes computational models which
are specified using the abstract language associated with
quantum mechanics (QM), as opposed to the abstract
language associated with classical mechanics (CM).

1 / 34

What’s so special about quantum computers?

2 / 34

What’s so special about quantum computers?

• They give us insight into the differences between CM and QM.

2 / 34

What’s so special about quantum computers?

• They give us insight into the differences between CM and QM.

• Quantum computers are (in principle) capable of easily
carrying out tasks that are generally accepted to be hard for a
classical computer.

- E.g., factoring, unstructured search.

2 / 34

What’s so special about quantum computers?

• They give us insight into the differences between CM and QM.

• Quantum computers are (in principle) capable of easily
carrying out tasks that are generally accepted to be hard for a
classical computer.

- E.g., factoring, unstructured search.

Challenges

• Building scalable quantum computers requires that we deal
with external “noise” which causes computational errors.

2 / 34

What’s so special about quantum computers?

• They give us insight into the differences between CM and QM.

• Quantum computers are (in principle) capable of easily
carrying out tasks that are generally accepted to be hard for a
classical computer.

- E.g., factoring, unstructured search.

Challenges

• Building scalable quantum computers requires that we deal
with external “noise” which causes computational errors.

• Fault-tolerant computational models have been devised, but so
far there has been relatively little progress in scaling them up.

2 / 34

What’s so special about quantum computers?

• They give us insight into the differences between CM and QM.

• Quantum computers are (in principle) capable of easily
carrying out tasks that are generally accepted to be hard for a
classical computer.

- E.g., factoring, unstructured search.

Challenges

• Building scalable quantum computers requires that we deal
with external “noise” which causes computational errors.

• Fault-tolerant computational models have been devised, but so
far there has been relatively little progress in scaling them up.

Noisy Intermediate-Scale Quantum computing (NISQ)

• NISQ is a near-term workaround that focuses on hardware
components and problems that are inherently less sensitive to
noise (e.g., simulation, sampling).

2 / 34

II. Computational complexity theory

Effective procedure (informal):

- Finite number of finite-length instructions

3 / 34

Effective procedure (informal):

- Finite number of finite-length instructions

- If followed exactly by a human being using nothing other than
paper and pencil,

3 / 34

Effective procedure (informal):

- Finite number of finite-length instructions

- If followed exactly by a human being using nothing other than
paper and pencil, guaranteed to produce a result in a finite
number of steps.

3 / 34

p q ∼ (p ∨ q) → (∼ p& ∼ q)

0 0 1

0 1 1

1 0 1

1 1 1

Effective procedure (informal):

- Finite number of finite-length instructions

- If followed exactly by a human being using nothing other than
paper and pencil, guaranteed to produce a result in a finite
number of steps.

· Example: Truth-table method (in sentential logic)

3 / 34

p q ∼ (p ∨ q) → (∼ p& ∼ q)

0 0 1

0 1 1

1 0 1

1 1 1

Effective procedure (informal):

- Finite number of finite-length instructions

- If followed exactly by a human being using nothing other than
paper and pencil, guaranteed to produce a result in a finite
number of steps.

· Example: Truth-table method (in sentential logic)

- Informal characterisation of human computation

3 / 34

Entscheidungsproblem (Decision problem):

• Give an effective procedure to decide whether an arbitrary
expression in first-order logic is provable from the axioms
(Hilbert & Ackermann, 1928, Pt. III).

4 / 34

Entscheidungsproblem (Decision problem):

• Give an effective procedure to decide whether an arbitrary
expression in first-order logic is provable from the axioms
(Hilbert & Ackermann, 1928, Pt. III).

• Turing (1936-7) showed that there is no general solution.

4 / 34

Entscheidungsproblem (Decision problem):

• Give an effective procedure to decide whether an arbitrary
expression in first-order logic is provable from the axioms
(Hilbert & Ackermann, 1928, Pt. III).

• Turing (1936-7) showed that there is no general solution.

• Utilised Turing’s thesis: any effectively calculable function can
be computed by an automatic machine.

4 / 34

Entscheidungsproblem (Decision problem):

• Give an effective procedure to decide whether an arbitrary
expression in first-order logic is provable from the axioms
(Hilbert & Ackermann, 1928, Pt. III).

• Turing (1936-7) showed that there is no general solution.

• Utilised Turing’s thesis: any effectively calculable function can
be computed by an automatic machine.

• Turing machine: Captures what is essential about the process
of human computation

4 / 34

Computability theory

• Concerns what can be computed in principle.

• Distinguishes between problems that can be computed and
those that cannot.

5 / 34

Computability theory

• Concerns what can be computed in principle.

• Distinguishes between problems that can be computed and
those that cannot.

Computational complexity theory

• Distinguishes computational problems on the basis of their
resource costs (in time and space).

5 / 34

Computability theory

• Concerns what can be computed in principle.

• Distinguishes between problems that can be computed and
those that cannot.

Computational complexity theory

• Distinguishes computational problems on the basis of their
resource costs (in time and space).

• Cobham-Edmonds thesis: A decision problem is tractable if it
is solvable in “polynomial time”, intractable if it is not.

5 / 34

Computability theory

• Concerns what can be computed in principle.

• Distinguishes between problems that can be computed and
those that cannot.

Computational complexity theory

• Distinguishes computational problems on the basis of their
resource costs (in time and space).

• Cobham-Edmonds thesis: A decision problem is tractable if it
is solvable in “polynomial time”, intractable if it is not.

- Example of a polynomial function: 5n6 + 4n2 + 3n + 2.
- Not a polynomial: 2n

k

+ . . . (“exponential”)

5 / 34

Computability theory

• Concerns what can be computed in principle.

• Distinguishes between problems that can be computed and
those that cannot.

Computational complexity theory

• Distinguishes computational problems on the basis of their
resource costs (in time and space).

• Cobham-Edmonds thesis: A decision problem is tractable if it
is solvable in “polynomial time”, intractable if it is not.

- Example of a polynomial function: 5n6 + 4n2 + 3n + 2.
- Not a polynomial: 2n

k

+ . . . (“exponential”)

5 / 34

Decision problem (yes-or-no question):

6 / 34

Decision problem (yes-or-no question):

• Of the form: Given a (binary) string x, is it in the language L?

6 / 34

Decision problem (yes-or-no question):

• Of the form: Given a (binary) string x, is it in the language L?

• E.g., “does x represent a prime number?”

→ “is x in the set: LPRIMES ≡ {10, 11, 101, 111, 1011,
1101, 10001, 10011, . . . }?”

6 / 34

Decision problem (yes-or-no question):

• Of the form: Given a (binary) string x, is it in the language L?

• E.g., “does x represent a prime number?”

→ “is x in the set: LPRIMES ≡ {10, 11, 101, 111, 1011,
1101, 10001, 10011, . . . }?”

• L ⊆ DTIME(T(n)) iff there is a (deterministic) Turing
machine that will come to a decision, in “on the order of
T(n)” steps, as to whether a given string x of length n is in L.

6 / 34

Decision problem (yes-or-no question):

• Of the form: Given a (binary) string x, is it in the language L?

• E.g., “does x represent a prime number?”

→ “is x in the set: LPRIMES ≡ {10, 11, 101, 111, 1011,
1101, 10001, 10011, . . . }?”

• L ⊆ DTIME(T(n)) iff there is a (deterministic) Turing
machine that will come to a decision, in “on the order of
T(n)” steps, as to whether a given string x of length n is in L.

· “On the order of T(n)”: t(n) is O(T(n)) iff for every

sufficiently large n, t(n) ≤ k · T(n) for some constant k.

· E.g., 5n4 + 3n2 + 4n + 1 is O(n4)

6 / 34

Decision problem (yes-or-no question):

• Of the form: Given a (binary) string x, is it in the language L?

• E.g., “does x represent a prime number?”

→ “is x in the set: LPRIMES ≡ {10, 11, 101, 111, 1011,
1101, 10001, 10011, . . . }?”

• L ⊆ DTIME(T(n)) iff there is a (deterministic) Turing
machine that will come to a decision, in “on the order of
T(n)” steps, as to whether a given string x of length n is in L.

· “On the order of T(n)”: t(n) is O(T(n)) iff for every

sufficiently large n, t(n) ≤ k · T(n) for some constant k.

· E.g., 5n4 + 3n2 + 4n + 1 is O(n4)

P =
⋃

k≥1
DTIME(nk).

6 / 34

Deterministic Turing machine (DTM)

7 / 34

Deterministic Turing machine (DTM)

• initial state + input ⇒ final state

7 / 34

Deterministic Turing machine (DTM)

• initial state + input ⇒ final state

• Unique instruction set (transition function)

7 / 34

Deterministic Turing machine (DTM)

• initial state + input ⇒ final state

• Unique instruction set (transition function)

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external
operator (i.e., not explicitly modeled).

7 / 34

Deterministic Turing machine (DTM)

• initial state + input ⇒ final state

• Unique instruction set (transition function)

• A DTM accepts x (outputs “yes”) if following its instruction
set, given the input x, results in its being in an “accept
state,” and rejects x (answers “no”) otherwise.

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external
operator (i.e., not explicitly modeled).

7 / 34

Deterministic Turing machine (DTM)

• initial state + input ⇒ final state

• Unique instruction set (transition function)

• A DTM accepts x (outputs “yes”) if following its instruction
set, given the input x, results in its being in an “accept
state,” and rejects x (answers “no”) otherwise.

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external
operator (i.e., not explicitly modeled).

• An NTM accepts x if there exists a path through its state
space, given x, that results in its being in an “accept state,”
and it rejects x otherwise.

7 / 34

Example of a Nondeterministic Turing Machine (NTM)

sstart

c0

c1 a

1,1,R

0,0,R

0,0,R

0,1,- / 1,1,-

1,1,R

0,0,R

0,0,L

0,0,-

1,1,R

Accepts: ∗00.

8 / 34

L ⊆ DTIME(T(n)) iff there is a deterministic Turing machine that
will produce a correct answer, in O(T(n)) steps, to the question of
whether a given string x of length n is in L (Arora & Barak, 2009,
p. 25).

9 / 34

L ⊆ DTIME(T(n)) iff there is a deterministic Turing machine that
will produce a correct answer, in O(T(n)) steps, to the question of
whether a given string x of length n is in L (Arora & Barak, 2009,
p. 25).

L ⊆ NTIME(T(n)) iff there is a nondeterministic Turing machine
that can answer “yes”, in O(T(n)) steps, whenever a given string
x of length n is in L (Arora & Barak, 2009, p. 41).

9 / 34

L ⊆ DTIME(T(n)) iff there is a deterministic Turing machine that
will produce a correct answer, in O(T(n)) steps, to the question of
whether a given string x of length n is in L (Arora & Barak, 2009,
p. 25).

L ⊆ NTIME(T(n)) iff there is a nondeterministic Turing machine
that can answer “yes”, in O(T(n)) steps, whenever a given string
x of length n is in L (Arora & Barak, 2009, p. 41).

NP =df
⋃

k≥1
NTIME(nk).

9 / 34

Deterministic Turing machine (DTM)

• initial state + input ⇒ final state

• Unique instruction set (transition function)

• A DTM accepts x (outputs “yes”) if following its instruction
set, given the input x, results in its being in an “accept
state,” and rejects x (answers “no”) otherwise.

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external
operator (i.e., not explicitly modeled).

• An NTM accepts x if there exists a path through its state
space, given x, that results in its being in an “accept state,”
and it rejects x otherwise.

10 / 34

a

0,0,R
(p = 3/8)

0,0,L
(p = 5/8)

1,1,R
(p = 4/5)

1,0,L
(p = 1/5)

Probabilistic Turing machine (PTM)

• Probabilities are associated with transitions.

11 / 34

BPP (bounded-error probabilistic polynomial time)

• Class of languages such that there exists a PTM that will
produce an answer to the question of whether or not a given
string x is in L . . .

12 / 34

BPP (bounded-error probabilistic polynomial time)

• Class of languages such that there exists a PTM that will
produce an answer to the question of whether or not a given
string x is in L in polynomial time . . .

12 / 34

BPP (bounded-error probabilistic polynomial time)

• Class of languages such that there exists a PTM that will
produce an answer to the question of whether or not a given
string x is in L in polynomial time with the probability that it
is correct, p ≥ 2/3.

12 / 34

BPP (bounded-error probabilistic polynomial time)

• Class of languages such that there exists a PTM that will
produce an answer to the question of whether or not a given
string x is in L in polynomial time with the probability that it
is correct, p ≥ 2/3.

· (actually, p can be as low as: 1/2+ n−k)

12 / 34

BPP (bounded-error probabilistic polynomial time)

• Class of languages such that there exists a PTM that will
produce an answer to the question of whether or not a given
string x is in L in polynomial time with the probability that it
is correct, p ≥ 2/3.

· (actually, p can be as low as: 1/2+ n−k)

BQP (quantum bounded-error probabilistic polynomial time)

• Class of languages such that there exists a
Quantum-probabilistic Turing machine that will produce an
answer to the question of whether or not a given string x is in
L in polynomial time, with the probability that it is correct,
p ≥ 2/3.

12 / 34

Run

Readout 0 1

1
2

1
2

1
2

1
2

13 / 34

Run

Readout 0 1

1
2

1
2

1
2

1
2

Pr(C0→ 0)

13 / 34

Run

Readout 0 1

1
2

1
2

1
2

1
2

Pr(C0→ 0) = Pr(C0→ 1) = Pr(C1→ 0) = Pr(C1→ 1) = 1
2

13 / 34

Run

Readout 0 1

1
2

1
2

1
2

1
2

Pr(C0→ 0) = Pr(C0→ 1) = Pr(C1→ 0) = Pr(C1→ 1) = 1
2

Pr(C20→ 0) = Pr(C0→ 0)× Pr(C0→ 0)

+ Pr(C0→ 1)× Pr(C1→ 0) = 1
2

13 / 34

Run

Readout

|0〉 Q−→ i√
2
|0〉 + 1√

2
|1〉

︸ ︷︷ ︸
|χ〉

Q−→ |1〉

|1〉 Q−→ 1√
2
|0〉 + i√

2
|1〉

︸ ︷︷ ︸
|ξ〉

Q−→ |0〉

14 / 34

Pr(C0→ 0) = 1
2

Pr(Q|0〉 meas−−−→ 0) = 1
2

Pr(C0→ 1) = 1
2 Pr(Q|0〉 meas−−−→ 1) = 1

2

Pr(C1→ 0) = 1
2 Pr(Q|1〉 meas−−−→ 0) = 1

2

Pr(C1→ 1) = 1
2

Pr(Q|1〉 meas−−−→ 1) = 1
2

15 / 34

Pr(C0→ 0) = 1
2

Pr(Q|0〉 meas−−−→ 0) = 1
2

Pr(C0→ 1) = 1
2 Pr(Q|0〉 meas−−−→ 1) = 1

2

Pr(C1→ 0) = 1
2 Pr(Q|1〉 meas−−−→ 0) = 1

2

Pr(C1→ 1) = 1
2

Pr(Q|1〉 meas−−−→ 1) = 1
2

Pr(C20→ 0) = 1
2 Pr(Q2|0〉 meas−−−→ 0) = 0

Pr(C20→ 1) = 1
2

Pr(Q2|0〉 meas−−−→ 1) = 1

Pr(C21→ 0) = 1
2 Pr(Q2|1〉 meas−−−→ 0) = 1

Pr(C21→ 1) = 1
2 Pr(Q2|1〉 meas−−−→ 1) = 0

15 / 34

BPP ⊆ BQP

16 / 34

BPP ⊆ BQP

BPP (BQP?

⇒ Do problems exist that are tractable for a quantum computer
but (provably) intractable for a PTM?

16 / 34

III. The Physics of Classical and Quantum

Computers

Classical computers

17 / 34

Classical computers

• Manipulate bits

17 / 34

Classical computers

• Manipulate bits: abstractly, binary digits

17 / 34

Classical computers

• Manipulate bits: abstractly, binary digits

• Physically realised in a 2-level system

17 / 34

Classical computers

• Manipulate bits: abstractly, binary digits

• Physically realised in a 2-level system, e.g., light switch,
magnet, . . .

17 / 34

Classical computers

• Manipulate bits: abstractly, binary digits

• Physically realised in a 2-level system, e.g., light switch,
magnet, or any physical process in which we can distinguish
two physical states, e.g.,

17 / 34

Classical logic gates

18 / 34

Classical logic gates

Classical circuit

18 / 34

Universal set:

Another universal set:

Given a universal set of logic gates, we can exactly simulate the
output of any arbitrary logic gate.

19 / 34

Another universal set:

Another universal set:

Given a universal set of logic gates, we can exactly simulate the
output of any arbitrary logic gate.

20 / 34

Quantum computers

• Manipulate quantum bits (qubits),

21 / 34

Quantum computers

• Manipulate quantum bits (qubits), abstractly: unit vectors in
a 2-dimensional complex Hilbert space.

21 / 34

Quantum computers

• Manipulate quantum bits (qubits), abstractly: unit vectors in
a 2-dimensional complex Hilbert space.

• Physically realised by a 2-level quantum system, e.g., the spin
of an electron in a particular direction.

21 / 34

Quantum computers

• Manipulate quantum bits (qubits), abstractly: unit vectors in
a 2-dimensional complex Hilbert space.

• Physically realised by a 2-level quantum system, e.g., the spin
of an electron in a particular direction.

|0〉

|1〉

• Typically initialized in one of the “computational basis”
states, i.e., the eigenstates, {|0〉, |1〉}, of the Pauli Z operator.

21 / 34

Quantum computers

• Manipulate quantum bits (qubits), abstractly: unit vectors in
a 2-dimensional complex Hilbert space.

• Physically realised by a 2-level quantum system, e.g., the spin
of an electron in a particular direction.

|0〉

|1〉

• Typically initialized in one of the “computational basis”
states, i.e., the eigenstates, {|0〉, |1〉}, of the Pauli Z operator.

• General form for a qubit’s state (in the z-basis): α|0〉 + β|1〉
21 / 34

Quantum computers

• Manipulate quantum bits (qubits), abstractly: unit vectors in
a 2-dimensional complex Hilbert space.

• Physically realised by a 2-level quantum system, e.g., the spin
of an electron in a particular direction.

|0〉

|1〉

• Typically initialized in one of the “computational basis”
states, i.e., the eigenstates, {|0〉, |1〉}, of the Pauli Z operator.

• General form for a qubit’s state (in any basis): c1|b1〉+ c2|b2〉
21 / 34

Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

22 / 34

Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 X |1〉

|1〉 X |0〉

π-rotation about
x-axis

X|0〉 = |1〉 X|1〉 = |0〉

22 / 34

Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 Y i|1〉

|1〉 Y −i|0〉

π-rotation about
y-axis

Y|0〉 = i|1〉 Y|1〉 = −i|0〉

22 / 34

Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 Z |0〉

|1〉 Z −|1〉

π-rotation about
z-axis

Z|0〉 = |0〉 Z|1〉 = −|1〉

22 / 34

Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 R |0〉

|1〉 R i|1〉

π/2-rotation
about z-axis

R|0〉 = |0〉 R|1〉 = i|1〉

22 / 34

Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2

(1) π/2-rotation
about y-axis +
(2) π-rotation
about x

H|0〉 =
|0〉 + |1〉√

2
H|1〉 =

|0〉 − |1〉√
2

22 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉,

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉,

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉, C10|10〉 = |11〉,

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉, C10|10〉 = |11〉, C10|11〉 = |10〉.

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉, C10|10〉 = |11〉, C10|11〉 = |10〉.

|0〉A • |0〉
|0〉B |0〉

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉, C10|10〉 = |11〉, C10|11〉 = |10〉.

|0〉A • |0〉
|1〉B |1〉

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉, C10|10〉 = |11〉, C10|11〉 = |10〉.

|1〉A • |1〉
|0〉B |1〉

23 / 34

Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉

C10|00〉 = |00〉, C10|01〉 = |01〉, C10|10〉 = |11〉, C10|11〉 = |10〉.

|1〉A • |1〉
|1〉B |0〉

23 / 34

Measurement gate

Implemented by a projective measurement in a given basis.

• Probabilistic transition

• Given α|0〉 + β|1〉, measurement in the z-basis yields |0〉 with
probability |α|2 and |1〉 with probability |β|2.

✌
✌
✌

24 / 34

Circuits

|ψ〉a • H ✌
✌
✌

M1

•

✌
✌
✌

M2

•
|Φ+〉ab {

XM2 ZM1 |ψ〉b

25 / 34

Universal set of quantum logic gates:

X Y

Z R

H •

|0〉 S |0〉

|1〉 S eiπ/4|1〉

Can simulate any quantum gate to arbitrary accuracy

26 / 34

IV. Deeper Analogies and Disanalogies

Consider the operator:

Ŝ ≡ Ŝa + Ŝb + Ŝc

• In QM we can assign a value to a sum without assigning
values to the summands.

27 / 34

Consider the operator:

Ŝ ≡ Ŝa + Ŝb + Ŝc

• In QM we can assign a value to a sum without assigning
values to the summands.

• Not possible in classical theory.

27 / 34

Consider the operator:

Ŝ ≡ Ŝa + Ŝb + Ŝc

• In QM we can assign a value to a sum without assigning
values to the summands.

• Not possible in classical theory.

• The kinematics of QM are less restrictive.

27 / 34

Consider the operator:

Ŝ ≡ Ŝa + Ŝb + Ŝc

• In QM we can assign a value to a sum without assigning
values to the summands.

• Not possible in classical theory.

• The kinematics of QM are less restrictive.

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

27 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

Quantum mechanics:

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Points in phase space are
“truthmakers”

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Points in phase space are
“truthmakers” in the sense that

· Fixing ω fixes the values for
every observable.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Points in phase space are
“truthmakers” in the sense that

· Fixing ω fixes the values for
every observable.

· A,B, . . . embeddable into a
global Boolean algebra.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Points in phase space are
“truthmakers” in the sense that

· Fixing ω fixes the values for
every observable.

· A,B, . . . embeddable into a
global Boolean algebra.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Vectors in Hilbert space not
“truthmakers”

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Points in phase space are
“truthmakers” in the sense that

· Fixing ω fixes the values for
every observable.

· A,B, . . . embeddable into a
global Boolean algebra.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Vectors in Hilbert space not
“truthmakers” in the sense that

· Fixing |ψ〉 only fixes
Pr(vA|A), Pr(vB |B), . . .

28 / 34

Comparing the kinematics of CM and QM

Classical mechanics:

• An observable A is represented
by fA(ω) acting on the phase
space of a system.

• With fA we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Points in phase space are
“truthmakers” in the sense that

· Fixing ω fixes the values for
every observable.

· A,B, . . . embeddable into a
global Boolean algebra.

Quantum mechanics:

• An observable A is represented by
Â acting on the Hilbert space of
a system.

• With Â we can associate a
Boolean algebra A of yes-or-no
questions concerning A.

• Vectors in Hilbert space not
“truthmakers” in the sense that

· Fixing |ψ〉 only fixes
Pr(vA|A), Pr(vB |B), . . .

· A,B, . . . not embeddable
into global Boolean algebra.

28 / 34

Conditional probability distribution:

• Informal gloss: “What to expect whenever I measure X”

29 / 34

Conditional probability distribution:

• Informal gloss: “What to expect whenever I measure X”

Classical mechanics:

• Specifying that I have chosen to measure the observable A (as
opposed to B) adds no information regarding what probabilities to
expect, over the possible outcomes of A, that is not already given
to us via the state description, ω (Hughes, 1989, p. 61).

29 / 34

Conditional probability distribution:

• Informal gloss: “What to expect whenever I measure X”

Classical mechanics:

• Specifying that I have chosen to measure the observable A (as
opposed to B) adds no information regarding what probabilities to
expect, over the possible outcomes of A, that is not already given
to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

• This is not the case.

29 / 34

Conditional probability distribution:

• Informal gloss: “What to expect whenever I measure X”

Classical mechanics:

• Specifying that I have chosen to measure the observable A (as
opposed to B) adds no information regarding what probabilities to
expect, over the possible outcomes of A, that is not already given
to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

• This is not the case.

• The case in which a state description is always “complete” (in the
classical sense) is a special case of the more general framework
described by QM.

29 / 34

Conditional probability distribution:

• Informal gloss: “What to expect whenever I measure X”

Classical mechanics:

• Specifying that I have chosen to measure the observable A (as
opposed to B) adds no information regarding what probabilities to
expect, over the possible outcomes of A, that is not already given
to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

• This is not the case.

• The case in which a state description is always “complete” (in the
classical sense) is a special case of the more general framework
described by QM.

• Result: exponentially more possible state descriptions for a given
n-dimensional system in QM. I.e., QM allows for entangled states.

• From a computational point of view: Exponentially more resources
available – allows for “shortcuts” through a system’s state space.

29 / 34

Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

30 / 34

Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

Quantum elliptope:

30 / 34

Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

Quantum elliptope: Classical tetrahedron:

30 / 34

Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

Higher values of spin?

Quantum elliptope: Classical tetrahedron:

30 / 34

Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

Higher values of spin? Result: M. Janas

Quantum elliptope: Classical polytope (spin 1):

30 / 34

Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

Higher values of spin? Result: M. Janas

Quantum elliptope: Classical polytope (spin 3

2
and 2):

30 / 34

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.

31 / 34

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.

Independent of the specifics 6= independent of the dynamics per se.

31 / 34

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.

Independent of the specifics 6= independent of the dynamics per se.

Gottesman-Knill Theorem:

• Merely possessing an entangled state isn’t enough to yield a
speedup over classical computation.

31 / 34

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.

Independent of the specifics 6= independent of the dynamics per se.

Gottesman-Knill Theorem:

• Merely possessing an entangled state isn’t enough to yield a
speedup over classical computation.

• The Clifford group of operations alone are sufficient to
generate an entangled state.

• However: You also need to use it effectively

31 / 34

Clifford group of quantum logic gates:

X Y

Z R

H •

32 / 34

Clifford group of quantum logic gates:

X Y

Z R

H •

Not universal

32 / 34

Universal set of quantum logic gates:

X Y

Z R

H •

|0〉 S |0〉

|1〉 S eiπ/4|1〉

Can simulate any quantum gate to arbitrary accuracy

32 / 34

Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.

33 / 34

Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.

Violated by quantum mechanical statistics in general.

33 / 34

Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.

Violated by quantum mechanical statistics in general. E.g., let
m̂, m̂ ′, n̂, n̂ ′ lie in the same plane with respective orientations of:
0, π/2, π/4,−π/4.

33 / 34

Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.

Violated by quantum mechanical statistics in general. E.g., let
m̂, m̂ ′, n̂, n̂ ′ lie in the same plane with respective orientations of:
0, π/2, π/4,−π/4. Then for the singlet state, since:
〈σm ⊗ σn〉 = −m̂ · n̂ = − cos θ,

33 / 34

Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.

Violated by quantum mechanical statistics in general. E.g., let
m̂, m̂ ′, n̂, n̂ ′ lie in the same plane with respective orientations of:
0, π/2, π/4,−π/4. Then for the singlet state, since:
〈σm ⊗ σn〉 = −m̂ · n̂ = − cos θ,

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| = 2
√
2 6≤ 2.

33 / 34

Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.

Violated by quantum mechanical statistics in general. E.g., let
m̂, m̂ ′, n̂, n̂ ′ lie in the same plane with respective orientations of:
0, π/2, π/4,−π/4. Then for the singlet state, since:
〈σm ⊗ σn〉 = −m̂ · n̂ = − cos θ,

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| = 2
√
2 6≤ 2.

But no conflict when m̂ and n̂, m̂ and n̂ ′, m̂ ′ and n̂, and m̂ ′ and
n̂ ′ are all oriented at angles ∝ π/2.
⇒ The Pauli measurements (Clifford group).

33 / 34

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.

Independent of the specifics 6= independent of the dynamics per se.

Gottesman-Knill Theorem:

• Merely possessing an entangled state isn’t enough to yield a
speedup over classical computation.

• The Clifford group of operations alone are sufficient to
generate an entangled state.

• However: You also need to use it effectively

34 / 34

Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.

Independent of the specifics 6= independent of the dynamics per se.

Gottesman-Knill Theorem:

• Merely possessing an entangled state isn’t enough to yield a
speedup over classical computation.

• The Clifford group of operations alone are sufficient to
generate an entangled state.

• However: You also need to use it effectively

• I.e., you need to perform the right operations (duh!)

34 / 34

Thanks!

Works Cited I

Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach.
Cambridge: Cambridge University Press.

Cuffaro, M. E. (2017). On the significance of the Gottesman-Knill theorem. The

British Journal for the Philosophy of Science, 68 , 91–121.

Hilbert, D., & Ackermann, W. (1928). Principles of Mathematical Logic. Berlin:
Springer-Verlag.

Hughes, R. I. G. (1989). The Structure and Interpretation of Quantum Mechanics.
Cambridge, MA.: Harvard University Press.

Janas, M., Cuffaro, M. E., & Janssen, M. (2022). Understanding Quantum Raffles:

Quantum Mechanics on an Informational Approach: Structure and Interpretation.
Cham: Springer-Verlag. Foreword by Jeffrey Bub.

Janssen, M. (2009). Drawing the line between kinematics and dynamics in special
relativity. Studies in History and Philosophy of Modern Physics, 40 , 26–52.

Turing, A. M. (1936-7). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society. Second

Series, s2-42 , 230–265.

	References

