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I. Introduction



What is quantum computing?

• Combines fundamental concepts from two separate sciences:
(1) Computer science and (2) Physics.
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What is quantum computing?

• Combines fundamental concepts from two separate sciences:
(1) Computer science and (2) Physics.

• Quantum computing describes computational models which
are specified using the abstract language associated with
quantum mechanics (QM), as opposed to the abstract
language associated with classical mechanics (CM).
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What’s so special about quantum computers?

• They give us insight into the differences between CM and QM.

• Quantum computers are (in principle) capable of easily
carrying out tasks that are generally accepted to be hard for a
classical computer.

- E.g., factoring, unstructured search.

Challenges

• Building scalable quantum computers requires that we deal
with external “noise” which causes computational errors.

• Fault-tolerant computational models have been devised, but so
far there has been relatively little progress in scaling them up.

Noisy Intermediate-Scale Quantum computing (NISQ)

• NISQ is a near-term workaround that focuses on hardware
components and problems that are inherently less sensitive to
noise (e.g., simulation, sampling).

2 / 34



II. Computational complexity theory



Effective procedure (informal):
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0 0 1

0 1 1

1 0 1

1 1 1

Effective procedure (informal):

- Finite number of finite-length instructions

- If followed exactly by a human being using nothing other than
paper and pencil, guaranteed to produce a result in a finite
number of steps.

· Example: Truth-table method (in sentential logic)

- Informal characterisation of human computation
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Entscheidungsproblem (Decision problem):

• Give an effective procedure to decide whether an arbitrary
expression in first-order logic is provable from the axioms
(Hilbert & Ackermann, 1928, Pt. III).
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Entscheidungsproblem (Decision problem):

• Give an effective procedure to decide whether an arbitrary
expression in first-order logic is provable from the axioms
(Hilbert & Ackermann, 1928, Pt. III).

• Turing (1936-7) showed that there is no general solution.

• Utilised Turing’s thesis: any effectively calculable function can
be computed by an automatic machine.

• Turing machine: Captures what is essential about the process
of human computation
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machine that will come to a decision, in “on the order of
T(n)” steps, as to whether a given string x of length n is in L.

· “On the order of T(n)”: t(n) is O(T(n)) iff for every

sufficiently large n, t(n) ≤ k · T(n) for some constant k.

· E.g., 5n4 + 3n2 + 4n + 1 is O(n4)

P =
⋃

k≥1
DTIME(nk).
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state,” and rejects x (answers “no”) otherwise.

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external
operator (i.e., not explicitly modeled).

• An NTM accepts x if there exists a path through its state
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Example of a Nondeterministic Turing Machine (NTM)

sstart

c0

c1 a

1,1,R

0,0,R

0,0,R

0,1,- / 1,1,-

1,1,R

0,0,R

0,0,L

0,0,-

1,1,R

Accepts: ∗00.
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L ⊆ DTIME(T(n)) iff there is a deterministic Turing machine that
will produce a correct answer, in O(T(n)) steps, to the question of
whether a given string x of length n is in L (Arora & Barak, 2009,
p. 25).
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a

0,0,R
(p = 3/8)

0,0,L
(p = 5/8)

1,1,R
(p = 4/5)

1,0,L
(p = 1/5)

Probabilistic Turing machine (PTM)

• Probabilities are associated with transitions.
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BPP (bounded-error probabilistic polynomial time)

• Class of languages such that there exists a PTM that will
produce an answer to the question of whether or not a given
string x is in L in polynomial time with the probability that it
is correct, p ≥ 2/3.

· (actually, p can be as low as: 1/2+ n−k)

BQP ( quantum bounded-error probabilistic polynomial time)

• Class of languages such that there exists a
Quantum-probabilistic Turing machine that will produce an
answer to the question of whether or not a given string x is in
L in polynomial time, with the probability that it is correct,
p ≥ 2/3.
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Run

Readout 0 1

1
2

1
2

1
2

1
2

Pr(C0→ 0) = Pr(C0→ 1) = Pr(C1→ 0) = Pr(C1→ 1) = 1
2

Pr(C20→ 0) = Pr(C0→ 0)× Pr(C0→ 0)

+ Pr(C0→ 1)× Pr(C1→ 0) = 1
2
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Run

Readout

|0〉 Q−→ i√
2
|0〉 + 1√

2
|1〉

︸ ︷︷ ︸
|χ〉

Q−→ |1〉

|1〉 Q−→ 1√
2
|0〉 + i√

2
|1〉

︸ ︷︷ ︸
|ξ〉

Q−→ |0〉
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Pr(C0→ 0) = 1
2

Pr(Q|0〉 meas−−−→ 0) = 1
2

Pr(C0→ 1) = 1
2 Pr(Q|0〉 meas−−−→ 1) = 1

2

Pr(C1→ 0) = 1
2 Pr(Q|1〉 meas−−−→ 0) = 1

2

Pr(C1→ 1) = 1
2

Pr(Q|1〉 meas−−−→ 1) = 1
2
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Pr(C0→ 0) = 1
2

Pr(Q|0〉 meas−−−→ 0) = 1
2

Pr(C0→ 1) = 1
2 Pr(Q|0〉 meas−−−→ 1) = 1

2

Pr(C1→ 0) = 1
2 Pr(Q|1〉 meas−−−→ 0) = 1

2

Pr(C1→ 1) = 1
2

Pr(Q|1〉 meas−−−→ 1) = 1
2

Pr(C20→ 0) = 1
2 Pr(Q2|0〉 meas−−−→ 0) = 0

Pr(C20→ 1) = 1
2

Pr(Q2|0〉 meas−−−→ 1) = 1

Pr(C21→ 0) = 1
2 Pr(Q2|1〉 meas−−−→ 0) = 1

Pr(C21→ 1) = 1
2 Pr(Q2|1〉 meas−−−→ 1) = 0
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BPP ⊆ BQP
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BPP ⊆ BQP

BPP ( BQP?

⇒ Do problems exist that are tractable for a quantum computer
but (provably) intractable for a PTM?
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III. The Physics of Classical and Quantum

Computers



Classical computers
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Classical computers

• Manipulate bits: abstractly, binary digits

• Physically realised in a 2-level system, e.g., light switch,
magnet, or any physical process in which we can distinguish
two physical states, e.g.,
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Classical logic gates
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Classical logic gates

Classical circuit
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Universal set:

Another universal set:

Given a universal set of logic gates, we can exactly simulate the
output of any arbitrary logic gate.
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• Manipulate quantum bits (qubits), abstractly: unit vectors in
a 2-dimensional complex Hilbert space.

• Physically realised by a 2-level quantum system, e.g., the spin
of an electron in a particular direction.

|0〉

|1〉

• Typically initialized in one of the “computational basis”
states, i.e., the eigenstates, {|0〉, |1〉}, of the Pauli Z operator.

• General form for a qubit’s state (in any basis): c1|b1〉+ c2|b2〉
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Quantum logic gates
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preserving), UU† = U†U = I, on unit vectors
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Quantum logic gates
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Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 Z |0〉

|1〉 Z −|1〉

π-rotation about
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Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 R |0〉

|1〉 R i|1〉

π/2-rotation
about z-axis

R|0〉 = |0〉 R|1〉 = i|1〉
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Quantum logic gates

• Described by unitary transformations (reversible, norm
preserving), UU† = U†U = I, on unit vectors

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2

(1) π/2-rotation
about y-axis +
(2) π-rotation
about x

H|0〉 =
|0〉 + |1〉√

2
H|1〉 =

|0〉 − |1〉√
2
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Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉
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Controlled-Not (CNOT) gate (a.k.a. Controlled-X gate)

C10|x〉|y〉 = |x〉|y⊕ x〉
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Measurement gate

Implemented by a projective measurement in a given basis.

• Probabilistic transition

• Given α|0〉 + β|1〉, measurement in the z-basis yields |0〉 with
probability |α|2 and |1〉 with probability |β|2.

✌
✌
✌
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Circuits

|ψ〉a • H ✌
✌
✌

M1

•

✌
✌
✌

M2

•
|Φ+〉ab {

XM2 ZM1 |ψ〉b
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Universal set of quantum logic gates:

X Y

Z R

H •

|0〉 S |0〉

|1〉 S eiπ/4|1〉

Can simulate any quantum gate to arbitrary accuracy
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IV. Deeper Analogies and Disanalogies



Consider the operator:

Ŝ ≡ Ŝa + Ŝb + Ŝc

• In QM we can assign a value to a sum without assigning
values to the summands.
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• In QM we can assign a value to a sum without assigning
values to the summands.

• Not possible in classical theory.

• The kinematics of QM are less restrictive.

27 / 34



Consider the operator:

Ŝ ≡ Ŝa + Ŝb + Ŝc

• In QM we can assign a value to a sum without assigning
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Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.
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Classical mechanics:

• Specifying that I have chosen to measure the observable A (as
opposed to B) adds no information regarding what probabilities to
expect, over the possible outcomes of A, that is not already given
to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

• This is not the case.

• The case in which a state description is always “complete” (in the
classical sense) is a special case of the more general framework
described by QM.

• Result: exponentially more possible state descriptions for a given
n-dimensional system in QM. I.e., QM allows for entangled states.

• From a computational point of view: Exponentially more resources
available – allows for “shortcuts” through a system’s state space.
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Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0
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Illustration: General constraint on the correlations between three
balanced random variables (Janas, MEC, & Janssen 2022):

1− χ2ab − χ
2
ac − χ

2
bc + 2χabχacχbc ≥ 0

Higher values of spin? Result: M. Janas

Quantum elliptope: Classical polytope (spin 3

2
and 2):
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Kinematical constraints (broad sense; see Janssen 2009):

• Constraints imposed by a theoretical framework on our
physical description of a system independently of the specifics
of its dynamics.

• Kinematics of QM are less restrictive.
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Clifford group of quantum logic gates:

X Y

Z R

H •
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Universal set of quantum logic gates:

X Y

Z R

H •

|0〉 S |0〉

|1〉 S eiπ/4|1〉

Can simulate any quantum gate to arbitrary accuracy
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Analogy: CHSH inequality (MEC 2017)

Assuming that outcomes of local experiments depend only on the
local setup and on the value of a hidden variable λ assigned to the
combined system at state preparation, then:

|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| ≤ 2.
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|〈σm ⊗ σn〉 + 〈σm ⊗ σn ′〉| + |〈σm ′ ⊗ σn〉− 〈σm ′ ⊗ σn ′〉| = 2
√
2 6≤ 2.

But no conflict when m̂ and n̂, m̂ and n̂ ′, m̂ ′ and n̂, and m̂ ′ and
n̂ ′ are all oriented at angles ∝ π/2.
⇒ The Pauli measurements (Clifford group).
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Independent of the specifics 6= independent of the dynamics per se.

Gottesman-Knill Theorem:

• Merely possessing an entangled state isn’t enough to yield a
speedup over classical computation.

• The Clifford group of operations alone are sufficient to
generate an entangled state.

• However: You also need to use it effectively

• I.e., you need to perform the right operations (duh!)
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Thanks!
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