Analogies and Disanalogies Between Classical and Quantum Physical Computation

Michael E. Cuffaro[†]

[†]Munich Center for Mathematical Philosophy, LMU Munich Michael.Cuffaro@Imu.de

November 25, 2024

Politecnico di Milano, Milan, Italy

I. Introduction

What is quantum computing?

• Combines fundamental concepts from two separate sciences: (1) Computer science and (2) Physics.

What is quantum computing?

- Combines fundamental concepts from two separate sciences: (1) Computer science and (2) Physics.
- Quantum computing describes computational models which are specified using the abstract language associated with quantum mechanics (QM), as opposed to the abstract language associated with classical mechanics (CM).

• They give us insight into the differences between CM and QM.

- They give us insight into the differences between CM and QM.
- Quantum computers are (in principle) capable of easily carrying out tasks that are generally accepted to be hard for a classical computer.
 - E.g., factoring, unstructured search.

- They give us insight into the differences between CM and QM.
- Quantum computers are (in principle) capable of easily carrying out tasks that are generally accepted to be hard for a classical computer.
 - E.g., factoring, unstructured search.

Challenges

• Building scalable quantum computers requires that we deal with external "noise" which causes computational errors.

- They give us insight into the differences between CM and QM.
- Quantum computers are (in principle) capable of easily carrying out tasks that are generally accepted to be hard for a classical computer.
 - E.g., factoring, unstructured search.

Challenges

- Building scalable quantum computers requires that we deal with external "noise" which causes computational errors.
- Fault-tolerant computational models have been devised, but so far there has been relatively little progress in scaling them up.

- They give us insight into the differences between CM and QM.
- Quantum computers are (in principle) capable of easily carrying out tasks that are generally accepted to be hard for a classical computer.
 - E.g., factoring, unstructured search.

Challenges

- Building scalable quantum computers requires that we deal with external "noise" which causes computational errors.
- Fault-tolerant computational models have been devised, but so far there has been relatively little progress in scaling them up.

Noisy Intermediate-Scale Quantum computing (NISQ)

• NISQ is a near-term workaround that focuses on hardware components and problems that are inherently less sensitive to noise (e.g., simulation, sampling).

II. Computational complexity theory

- Finite number of finite-length instructions

- Finite number of finite-length instructions
- If followed exactly by a human being using nothing other than paper and pencil,

- Finite number of finite-length instructions
- If followed exactly by a human being using nothing other than paper and pencil, guaranteed to produce a result in a finite number of steps.

- Finite number of finite-length instructions
- If followed exactly by a human being using nothing other than paper and pencil, guaranteed to produce a result in a finite number of steps.
 - · Example: Truth-table method (in sentential logic)

- Finite number of finite-length instructions
- If followed exactly by a human being using nothing other than paper and pencil, guaranteed to produce a result in a finite number of steps.
 - · Example: Truth-table method (in sentential logic)
- Informal characterisation of human computation

• Give an effective procedure to decide whether an arbitrary expression in first-order logic is provable from the axioms (Hilbert & Ackermann, 1928, Pt. III).

- Give an effective procedure to decide whether an arbitrary expression in first-order logic is provable from the axioms (Hilbert & Ackermann, 1928, Pt. III).
- Turing (1936-7) showed that there is no general solution.

- Give an effective procedure to decide whether an arbitrary expression in first-order logic is provable from the axioms (Hilbert & Ackermann, 1928, Pt. III).
- Turing (1936-7) showed that there is no general solution.
- Utilised <u>Turing's thesis:</u> any effectively calculable function can be computed by an automatic machine.

- Give an effective procedure to decide whether an arbitrary expression in first-order logic is provable from the axioms (Hilbert & Ackermann, 1928, Pt. III).
- Turing (1936-7) showed that there is no general solution.
- Utilised <u>Turing's thesis:</u> any effectively calculable function can be computed by an automatic machine.
- <u>Turing machine</u>: Captures what is essential about the process of human computation

- Concerns what can be computed in principle.
- Distinguishes between problems that <u>can</u> be computed and those that <u>cannot</u>.

- Concerns what can be computed in principle.
- Distinguishes between problems that <u>can</u> be computed and those that <u>cannot</u>.

Computational complexity theory

• Distinguishes computational problems on the basis of their resource costs (in time and space).

- Concerns what can be computed in principle.
- Distinguishes between problems that <u>can</u> be computed and those that <u>cannot</u>.

Computational complexity theory

- Distinguishes computational problems on the basis of their resource costs (in time and space).
- <u>Cobham-Edmonds thesis</u>: A decision problem is <u>tractable</u> if it is solvable in "polynomial time", <u>intractable</u> if it is not.

- Concerns what can be computed in principle.
- Distinguishes between problems that <u>can</u> be computed and those that <u>cannot</u>.

Computational complexity theory

- Distinguishes computational problems on the basis of their resource costs (in time and space).
- <u>Cobham-Edmonds thesis</u>: A decision problem is <u>tractable</u> if it is solvable in "polynomial time", <u>intractable</u> if it is not.
 - Example of a polynomial function: $5n^6 + 4n^2 + 3n + 2$.
 - <u>Not</u> a polynomial: $2^{n^k} + \dots$ ("exponential")

- Concerns what can be computed in principle.
- Distinguishes between problems that <u>can</u> be computed and those that <u>cannot</u>.

Computational complexity theory

- Distinguishes computational problems on the basis of their resource costs (in time and space).
- <u>Cobham-Edmonds thesis</u>: A decision problem is <u>tractable</u> if it is solvable in "polynomial time", <u>intractable</u> if it is not.
 - Example of a polynomial function: $5n^6 + 4n^2 + 3n + 2$.
 - <u>Not</u> a polynomial: $2^{n^k} + \dots$ ("exponential")

• Of the form: Given a (binary) string x, is it in the language L?

- Of the form: Given a (binary) string x, is it in the language L?
- E.g., "does x represent a prime number?"
 - \rightarrow "is x in the set: $L_{\rm PRIMES} \equiv$ {10, 11, 101, 111, 1011, 1101, 10001, 10011, ... }?"

- Of the form: Given a (binary) string x, is it in the language L?
- E.g., "does x represent a prime number?"
 - \rightarrow "is x in the set: L_{PRIMES} \equiv {10, 11, 101, 111, 1011, 1101, 10011, 10011, ...}?"
- L ⊆ DTIME(T(n)) iff there is a (deterministic) Turing machine that will come to a decision, in "on the order of T(n)" steps, as to whether a given string x of length n is in L.

- Of the form: Given a (binary) string x, is it in the language L?
- E.g., "does x represent a prime number?"
 - \rightarrow "is x in the set: L_{PRIMES} \equiv {10, 11, 101, 111, 1011, 1101, 10011, 10011, ...}?"
- L ⊆ DTIME(T(n)) iff there is a (deterministic) Turing machine that will come to a decision, in "on the order of T(n)" steps, as to whether a given string x of length n is in L.
 - "On the order of T(n)": t(n) is O(T(n)) iff for every sufficiently large n, $t(n) \le k \cdot T(n)$ for some constant k.
 - · E.g., $5n^4 + 3n^2 + 4n + 1$ is $O(n^4)$

- Of the form: Given a (binary) string x, is it in the language L?
- E.g., "does x represent a prime number?"
 - \rightarrow "is x in the set: L_{PRIMES} \equiv {10, 11, 101, 111, 1011, 1101, 10011, 10011, ...}?"
- L ⊆ DTIME(T(n)) iff there is a (deterministic) Turing machine that will come to a decision, in "on the order of T(n)" steps, as to whether a given string x of length n is in L.
 - · "On the order of T(n)": t(n) is O(T(n)) iff for every sufficiently large n, t(n) $\leq k \cdot T(n)$ for some constant k.
 - · E.g., $5n^4 + 3n^2 + 4n + 1$ is $O(n^4)$

 $\mathsf{P} = \bigcup_{k \ge 1} \mathsf{DTIME}(n^k).$

 $\bullet \ \ \text{initial state} + \ \text{input} \Rightarrow \ \text{final state}$

- $\bullet \ \ \text{initial state} + \ \text{input} \Rightarrow \ \text{final state}$
- Unique instruction set (transition function)

- $\bullet \ \ \text{initial state} + \ \text{input} \Rightarrow \ \text{final state}$
- Unique instruction set (transition function)

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external operator (i.e., not explicitly modeled).

- $\bullet \ \ \text{initial state} + \ \text{input} \Rightarrow \ \text{final state}$
- Unique instruction set (transition function)
- A DTM accepts x (outputs "yes") if following its instruction set, given the input x, results in its being in an "accept state," and rejects x (answers "no") otherwise.

Nondeterministic Turing Machine (NTM)

• Multiple transition functions; choices are made by an external operator (i.e., not explicitly modeled).
Deterministic Turing machine (DTM)

- $\bullet \ \mbox{initial state} + \mbox{input} \Rightarrow \mbox{final state}$
- Unique instruction set (transition function)
- A DTM accepts x (outputs "yes") if following its instruction set, given the input x, results in its being in an "accept state," and rejects x (answers "no") otherwise.

Nondeterministic Turing Machine (NTM)

- Multiple transition functions; choices are made by an external operator (i.e., not explicitly modeled).
- An NTM accepts x if there exists a path through its state space, given x, that results in its being in an "accept state," and it rejects x otherwise.

Example of a Nondeterministic Turing Machine (NTM)

Accepts: *00.

 $L \subseteq DTIME(T(n))$ iff there is a deterministic Turing machine that will produce a correct answer, in O(T(n)) steps, to the question of whether a given string x of length n is in L (Arora & Barak, 2009, p. 25).

 $L \subseteq DTIME(T(n))$ iff there is a deterministic Turing machine that will produce a correct answer, in O(T(n)) steps, to the question of whether a given string x of length n is in L (Arora & Barak, 2009, p. 25).

 $L \subseteq \text{NTIME}(T(n))$ iff there is a <u>nondeterministic</u> Turing machine that can answer "yes", in O(T(n)) steps, whenever a given string x of length n is in L (Arora & Barak, 2009, p. 41).

 $L \subseteq DTIME(T(n))$ iff there is a deterministic Turing machine that will produce a correct answer, in O(T(n)) steps, to the question of whether a given string x of length n is in L (Arora & Barak, 2009, p. 25).

 $L \subseteq \text{NTIME}(T(n))$ iff there is a <u>nondeterministic</u> Turing machine that can answer "yes", in O(T(n)) steps, whenever a given string x of length n is in L (Arora & Barak, 2009, p. 41).

 $\mathsf{NP} =_{df} \bigcup_{k \ge 1} \mathsf{NTIME}(n^k).$

Deterministic Turing machine (DTM)

- $\bullet \ \ \text{initial state} + \ \text{input} \Rightarrow \ \text{final state}$
- Unique instruction set (transition function)
- A DTM accepts x (outputs "yes") if following its instruction set, given the input x, results in its being in an "accept state," and rejects x (answers "no") otherwise.

Nondeterministic Turing Machine (NTM)

- Multiple transition functions; choices are made by an external operator (i.e., not explicitly modeled).
- An NTM accepts x if there exists a path through its state space, given x, that results in its being in an "accept state," and it rejects x otherwise.

Probabilistic Turing machine (PTM)

• Probabilities are associated with transitions.

• Class of languages such that there exists a PTM that will produce an answer to the question of whether or not a given string x is in L ...

• Class of languages such that there exists a PTM that will produce an answer to the question of whether or not a given string x is in L in polynomial time ...

• Class of languages such that there exists a PTM that will produce an answer to the question of whether or not a given string x is in L in polynomial time with the probability that it is correct, $p \ge 2/3$.

• Class of languages such that there exists a PTM that will produce an answer to the question of whether or not a given string x is in L in polynomial time with the probability that it is correct, $p \ge 2/3$.

 \cdot (actually, p can be as low as: $1/2 + n^{-k}$)

- Class of languages such that there exists a PTM that will produce an answer to the question of whether or not a given string x is in L in polynomial time with the probability that it is correct, p ≥ 2/3.
 - \cdot (actually, p can be as low as: $1/2 + n^{-k}$)

BQP (quantum bounded-error probabilistic polynomial time)

• Class of languages such that there exists a <u>Quantum</u>-probabilistic Turing machine that will produce an answer to the question of whether or not a given string x is in L in polynomial time, with the probability that it is correct, $p \ge 2/3$.

 $\Pr(C0 \rightarrow 0)$

$\Pr(C0 \to 0) = \Pr(C0 \to 1) = \Pr(C1 \to 0) = \Pr(C1 \to 1) = \frac{1}{2}$

 $\Pr(\mathsf{C0} \to \mathsf{0}) = \Pr(\mathsf{C0} \to \mathsf{1}) = \Pr(\mathsf{C1} \to \mathsf{0}) = \Pr(\mathsf{C1} \to \mathsf{1}) = \frac{1}{2}$

 $Pr(C^{2}0 \to 0) = Pr(C0 \to 0) \times Pr(C0 \to 0)$ $+ Pr(C0 \to 1) \times Pr(C1 \to 0) = \frac{1}{2}$

$$\begin{array}{c} |0\rangle \xrightarrow{\mathbb{Q}} \underbrace{\frac{i}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle}_{|\chi\rangle} \xrightarrow{\mathbb{Q}} |1\rangle \\ \\ |1\rangle \xrightarrow{\mathbb{Q}} \underbrace{\frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle}_{|\xi\rangle} \xrightarrow{\mathbb{Q}} |0\rangle \end{array}$$

 $Pr(C0 \rightarrow 0) = \frac{1}{2}$ $Pr(C0 \rightarrow 1) = \frac{1}{2}$ $Pr(C1 \rightarrow 0) = \frac{1}{2}$ $Pr(C1 \rightarrow 1) = \frac{1}{2}$

 $\begin{array}{l} \Pr(Q|0\rangle \xrightarrow{\text{meas}} 0) = \frac{1}{2} \\ \Pr(Q|0\rangle \xrightarrow{\text{meas}} 1) = \frac{1}{2} \\ \Pr(Q|1\rangle \xrightarrow{\text{meas}} 0) = \frac{1}{2} \\ \Pr(Q|1\rangle \xrightarrow{\text{meas}} 1) = \frac{1}{2} \end{array}$

 $Pr(C0 \rightarrow 0) = \frac{1}{2}$ $Pr(C0 \rightarrow 1) = \frac{1}{2}$ $Pr(C1 \rightarrow 0) = \frac{1}{2}$ $Pr(C1 \rightarrow 1) = \frac{1}{2}$

 $Pr(C^{2}0 \rightarrow 0) = \frac{1}{2}$ $Pr(C^{2}0 \rightarrow 1) = \frac{1}{2}$ $Pr(C^{2}1 \rightarrow 0) = \frac{1}{2}$ $Pr(C^{2}1 \rightarrow 1) = \frac{1}{2}$

 $\begin{array}{l} \Pr(Q|0\rangle \xrightarrow{\text{meas}} 0) = \frac{1}{2} \\ \Pr(Q|0\rangle \xrightarrow{\text{meas}} 1) = \frac{1}{2} \\ \Pr(Q|1\rangle \xrightarrow{\text{meas}} 0) = \frac{1}{2} \\ \Pr(Q|1\rangle \xrightarrow{\text{meas}} 1) = \frac{1}{2} \end{array}$

 $\begin{aligned} &\Pr(Q^2|0\rangle \xrightarrow{\text{meas}} 0) = 0 \\ &\Pr(Q^2|0\rangle \xrightarrow{\text{meas}} 1) = 1 \\ &\Pr(Q^2|1\rangle \xrightarrow{\text{meas}} 0) = 1 \\ &\Pr(Q^2|1\rangle \xrightarrow{\text{meas}} 1) = 0 \end{aligned}$

$\mathsf{BPP}\subseteq\mathsf{BQP}$

 $BPP \subseteq BQP$ $BPP \subseteq BQP?$

 \Rightarrow Do problems exist that are tractable for a quantum computer but (provably) intractable for a PTM?

III. The Physics of Classical and Quantum Computers

• Manipulate <u>bits</u>

• Manipulate <u>bits</u>: abstractly, binary digits

- Manipulate <u>bits</u>: abstractly, <u>binary digits</u>
- Physically realised in a 2-level system

- Manipulate <u>bits</u>: abstractly, <u>binary digits</u>
- Physically realised in a 2-level system, e.g., light switch, magnet, ...

- Manipulate <u>bits</u>: abstractly, binary digits
- Physically realised in a 2-level system, e.g., light switch, magnet, or any physical process in which we can distinguish two physical states, e.g.,

Classical logic gates

Classical logic gates

Classical circuit

Universal set:

Another universal set:

Given a universal set of logic gates, we can exactly simulate the output of any arbitrary logic gate.

Another universal set:

Another universal set:

Given a universal set of logic gates, we can exactly simulate the output of any arbitrary logic gate.

• Manipulate quantum bits (qubits),

- Manipulate quantum bits (qubits), abstractly: unit vectors in
 - a 2-dimensional complex Hilbert space.

- Manipulate <u>quantum bits</u> (qubits), abstractly: <u>unit vectors</u> in a 2-dimensional complex Hilbert space.
- Physically realised by a 2-level quantum system, e.g., the spin of an electron in a particular direction.

- Manipulate <u>quantum bits</u> (qubits), abstractly: <u>unit vectors</u> in a 2-dimensional complex Hilbert space.
- Physically realised by a 2-level quantum system, e.g., the spin of an electron in a particular direction.

 Typically initialized in one of the "computational basis" states, i.e., the eigenstates, {|0>, |1>}, of the Pauli Z operator.
Quantum computers

- Manipulate <u>quantum bits</u> (qubits), abstractly: <u>unit vectors</u> in a 2-dimensional complex Hilbert space.
- Physically realised by a 2-level quantum system, e.g., the spin of an electron in a particular direction.

- Typically initialized in one of the "computational basis" states, i.e., the eigenstates, {|0>, |1>}, of the Pauli Z operator.
- General form for a qubit's state (in the z-basis): $\alpha |0\rangle + \beta |1\rangle$

Quantum computers

- Manipulate <u>quantum bits</u> (qubits), abstractly: <u>unit vectors</u> in a 2-dimensional complex Hilbert space.
- Physically realised by a 2-level quantum system, e.g., the spin of an electron in a particular direction.

- Typically initialized in one of the "computational basis" states, i.e., the eigenstates, {|0>, |1>}, of the Pauli Z operator.
- General form for a qubit's state (in any basis): $c_1|b_1\rangle+c_2|b_2\rangle$

• Described by unitary transformations (reversible, norm preserving), $UU^{\dagger} = U^{\dagger}U = I$, on unit vectors

- Described by unitary transformations (reversible, norm preserving), $UU^\dagger=U^\dagger U=I,$ on unit vectors

π-rotation about x-axis

 $X|0\rangle = |1\rangle$ $X|1\rangle = |0\rangle$

- Described by unitary transformations (reversible, norm preserving), $UU^\dagger = U^\dagger U = I$, on unit vectors

π-rotation about y*-axis*

 $|Y|0\rangle = i|1\rangle$ $|Y|1\rangle = -i|0\rangle$

- Described by unitary transformations (reversible, norm preserving), $UU^\dagger=U^\dagger U=I,$ on unit vectors

$$|0\rangle - Z |0\rangle$$

 $|1\rangle - Z - |1\rangle$

π-rotation about z-axis

 $Z|0\rangle = |0\rangle$ $Z|1\rangle = -|1\rangle$

• Described by unitary transformations (reversible, norm preserving), $UU^\dagger = U^\dagger U = I$, on unit vectors

 $\pi/2$ -rotation about z-axis

$$R|0\rangle = |0\rangle$$

 $|R|1\rangle = i|1\rangle$

• Described by unitary transformations (reversible, norm preserving), $UU^{\dagger} = U^{\dagger}U = I$, on unit vectors

(1) $\pi/2$ -rotation about y-axis + (2) π -rotation about x

$$\mathsf{H}|\mathsf{0}\rangle \;=\; \frac{|\mathsf{0}\rangle + |\mathsf{1}\rangle}{\sqrt{2}}$$

$$|H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $C_{10}|00
angle = |00
angle$,

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $C_{10}|00\rangle = |00\rangle$, $C_{10}|01\rangle = |01\rangle$,

 $|C_{10}|x
angle|y
angle=|x
angle|y\oplus x
angle$

 $C_{10}|00\rangle = |00\rangle$, $C_{10}|01\rangle = |01\rangle$, $C_{10}|10\rangle = |11\rangle$,

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $\overline{C_{10}|00\rangle} = |00\rangle, \quad \overline{C_{10}|01\rangle} = |01\rangle, \quad \overline{C_{10}|10\rangle} = |11\rangle, \quad \overline{C_{10}|11\rangle} = |10\rangle.$

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

 $C_{10}|x\rangle|y\rangle=|x\rangle|y\oplus x\rangle$

Measurement gate

Implemented by a projective measurement in a given basis.

- Probabilistic transition
- Given $\alpha |0\rangle + \beta |1\rangle$, measurement in the z-basis yields $|0\rangle$ with probability $|\alpha|^2$ and $|1\rangle$ with probability $|\beta|^2$.

Circuits

Universal set of quantum logic gates:

$$|0\rangle - S |0\rangle |1\rangle - S e^{i\pi/4}|1\rangle$$

Can simulate any quantum gate to arbitrary accuracy

IV. Deeper Analogies and Disanalogies

$$\hat{S} \equiv \hat{S}_a + \hat{S}_b + \hat{S}_c$$

• In QM we can assign a value to a sum without assigning values to the summands.

$$\hat{S} \equiv \hat{S}_{a} + \hat{S}_{b} + \hat{S}_{c}$$

- In QM we can assign a value to a sum without assigning values to the summands.
- Not possible in classical theory.

$$\hat{S} \equiv \hat{S}_{a} + \hat{S}_{b} + \hat{S}_{c}$$

- In QM we can assign a value to a sum without assigning values to the summands.
- Not possible in classical theory.
- The kinematics of QM are less restrictive.

$$\hat{S} \equiv \hat{S}_{a} + \hat{S}_{b} + \hat{S}_{c}$$

- In QM we can assign a value to a sum without assigning values to the summands.
- Not possible in classical theory.
- The kinematics of QM are less restrictive.

Kinematical constraints (broad sense; see Janssen 2009):

 Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.

Classical mechanics:

Quantum mechanics:

 An observable A is represented by f_A(w) acting on the phase space of a system.

Classical mechanics:

 An observable A is represented by f_A(w) acting on the phase space of a system.

Quantum mechanics:

• An observable A is represented by acting on the Hilbert space of a system.

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.

Quantum mechanics:

 An observable A is represented by acting on the Hilbert space of a system.

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.

- An observable A is represented by acting on the Hilbert space of a system.
- With \hat{A} we can associate a Boolean algebra \mathfrak{A} of yes-or-no questions concerning A.

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra A of yes-or-no questions concerning A.
- Points in phase space are "truthmakers"

- An observable A is represented by acting on the Hilbert space of a system.
- With we can associate a Boolean algebra A of yes-or-no questions concerning A.

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra A of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
 - Fixing ω fixes the values for *every* observable.

- An observable A is represented by acting on the Hilbert space of a system.
- With we can associate a Boolean algebra A of yes-or-no questions concerning A.

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra A of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
 - Fixing ω fixes the values for *every* observable.
 - *A*, *B*,... embeddable into a global Boolean algebra.

- An observable A is represented by acting on the Hilbert space of a system.
- With we can associate a Boolean algebra A of yes-or-no questions concerning A.

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
 - Fixing ω fixes the values for *every* observable.
 - \$\mathcal{A}\$, \$\mathcal{B}\$, ... embeddable into a global Boolean algebra.

- An observable A is represented by acting on the Hilbert space of a system.
- With we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.
- Vectors in Hilbert space *not* "truthmakers"

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
 - Fixing ω fixes the values for *every* observable.
 - *A*, *B*,... embeddable into a global Boolean algebra.

- An observable A is represented by acting on the Hilbert space of a system.
- With we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.
- Vectors in Hilbert space not "truthmakers" in the sense that
 - $\begin{array}{l} \cdot \ \mbox{Fixing} \ |\psi\rangle \ \mbox{only fixes} \\ \Pr(\nu_{\mathcal{A}}|\mathcal{A}), \ \Pr(\nu_{B}|B), \ldots \end{array}$

Classical mechanics:

- An observable A is represented by f_A(w) acting on the phase space of a system.
- With f_A we can associate a Boolean algebra A of yes-or-no questions concerning A.
- Points in phase space are "truthmakers" in the sense that
 - Fixing ω fixes the values for *every* observable.
 - *A*, *B*,... embeddable into a global Boolean algebra.

- An observable A is represented by acting on the Hilbert space of a system.
- With we can associate a Boolean algebra 𝔄 of yes-or-no questions concerning A.
- Vectors in Hilbert space *not* "truthmakers" in the sense that
 - $\begin{array}{l} \cdot \ \mbox{Fixing} \ |\psi\rangle \ \mbox{only fixes} \\ \Pr(\nu_{\mathcal{A}}|\mathcal{A}), \ \Pr(\nu_{B}|B), \ldots \end{array}$
 - $\mathfrak{A}, \mathfrak{B}, \dots$ not embeddable into global Boolean algebra.

Conditional probability distribution:

• Informal gloss: "What to expect whenever I measure X"
• Informal gloss: "What to expect whenever I measure X"

Classical mechanics:

Specifying that I have chosen to measure the observable A (as opposed to B) adds no information regarding what probabilities to expect, over the possible outcomes of A, that is not already given to us via the state description, ω (Hughes, 1989, p. 61).

• Informal gloss: "What to expect whenever I measure X"

Classical mechanics:

Specifying that I have chosen to measure the observable A (as opposed to B) adds no information regarding what probabilities to expect, over the possible outcomes of A, that is not already given to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

• This is not the case.

• Informal gloss: "What to expect whenever I measure X"

Classical mechanics:

Specifying that I have chosen to measure the observable A (as opposed to B) adds no information regarding what probabilities to expect, over the possible outcomes of A, that is not already given to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

- This is not the case.
- The case in which a state description is always "complete" (in the classical sense) is a special case of the more general framework described by QM.

• Informal gloss: "What to expect whenever I measure X"

Classical mechanics:

Specifying that I have chosen to measure the observable A (as opposed to B) adds no information regarding what probabilities to expect, over the possible outcomes of A, that is not already given to us via the state description, ω (Hughes, 1989, p. 61).

Quantum mechanics:

- This is not the case.
- The case in which a state description is always "complete" (in the classical sense) is a special case of the more general framework described by QM.
- Result: exponentially more possible state descriptions for a given n-dimensional system in QM. I.e., QM allows for entangled states.
- From a computational point of view: Exponentially more resources available – allows for "shortcuts" through a system's state space.

$$1-\chi^2_{ab}-\chi^2_{ac}-\chi^2_{bc}+2\chi_{ab}\chi_{ac}\chi_{bc}\geq 0$$

$$1 - \chi^2_{ab} - \chi^2_{ac} - \chi^2_{bc} + 2\chi_{ab}\chi_{ac}\chi_{bc} \ge 0$$

Quantum elliptope:

$$1 - \chi^2_{ab} - \chi^2_{ac} - \chi^2_{bc} + 2\chi_{ab}\chi_{ac}\chi_{bc} \ge 0$$

Quantum elliptope:

Classical tetrahedron:

$$1 - \chi^2_{ab} - \chi^2_{ac} - \chi^2_{bc} + 2\chi_{ab}\chi_{ac}\chi_{bc} \ge 0$$

Higher values of spin?

Quantum elliptope:

Classical tetrahedron:

$$1 - \chi^2_{ab} - \chi^2_{ac} - \chi^2_{bc} + 2\chi_{ab}\chi_{ac}\chi_{bc} \ge 0$$

Higher values of spin? Result: M. Janas

Quantum elliptope:

Classical polytope (spin 1):

$$1 - \chi^2_{ab} - \chi^2_{ac} - \chi^2_{bc} + 2\chi_{ab}\chi_{ac}\chi_{bc} \ge 0$$

Higher values of spin? Result: M. Janas

Quantum elliptope:

Classical polytope (spin $\frac{3}{2}$ and 2):

- Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.
- Kinematics of QM are less restrictive.

- Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.
- Kinematics of QM are less restrictive.

Independent of the specifics \neq independent of the dynamics per se.

- Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.
- Kinematics of QM are less restrictive.

Independent of the specifics \neq independent of the dynamics per se.

Gottesman-Knill Theorem:

• Merely possessing an entangled state isn't enough to yield a speedup over classical computation.

- Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.
- Kinematics of QM are less restrictive.

Independent of the specifics \neq independent of the dynamics per se.

Gottesman-Knill Theorem:

- Merely possessing an entangled state isn't enough to yield a speedup over classical computation.
- The Clifford group of operations alone are sufficient to generate an entangled state.
- However: You also need to use it effectively

Clifford group of quantum logic gates:

Clifford group of quantum logic gates:

Not universal

Universal set of quantum logic gates:

$$|0\rangle - S |0\rangle |1\rangle - S e^{i\pi/4}|1\rangle$$

Can simulate any quantum gate to arbitrary accuracy

Assuming that outcomes of local experiments depend only on the local setup and on the value of a hidden variable λ assigned to the combined system at state preparation, then:

 $|\langle \sigma_{\mathfrak{m}}\otimes \sigma_{\mathfrak{n}}\rangle + \langle \sigma_{\mathfrak{m}}\otimes \sigma_{\mathfrak{n}'}\rangle| + |\langle \sigma_{\mathfrak{m}'}\otimes \sigma_{\mathfrak{n}}\rangle - \langle \sigma_{\mathfrak{m}'}\otimes \sigma_{\mathfrak{n}'}\rangle| \leq 2.$

Assuming that outcomes of local experiments depend only on the local setup and on the value of a hidden variable λ assigned to the combined system at state preparation, then:

$$|\langle \sigma_{\mathfrak{m}}\otimes \sigma_{\mathfrak{n}}\rangle + \langle \sigma_{\mathfrak{m}}\otimes \sigma_{\mathfrak{n}'}\rangle| + |\langle \sigma_{\mathfrak{m}'}\otimes \sigma_{\mathfrak{n}}\rangle - \langle \sigma_{\mathfrak{m}'}\otimes \sigma_{\mathfrak{n}'}\rangle| \leq 2.$$

Violated by quantum mechanical statistics in general.

Assuming that outcomes of local experiments depend only on the local setup and on the value of a hidden variable λ assigned to the combined system at state preparation, then:

 $|\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle + \langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}'} \rangle| + |\langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}} \rangle - \langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}'} \rangle| \leq 2.$

Violated by quantum mechanical statistics in general. E.g., let $\hat{m}, \hat{m}', \hat{n}, \hat{n}'$ lie in the same plane with respective orientations of: $0, \pi/2, \pi/4, -\pi/4$.

Assuming that outcomes of local experiments depend only on the local setup and on the value of a hidden variable λ assigned to the combined system at state preparation, then:

 $|\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle + \langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}'} \rangle| + |\langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}} \rangle - \langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}'} \rangle| \leq 2.$

Violated by quantum mechanical statistics in general. E.g., let $\hat{\mathfrak{m}}, \hat{\mathfrak{m}}', \hat{\mathfrak{n}}, \hat{\mathfrak{n}}'$ lie in the same plane with respective orientations of: $0, \pi/2, \pi/4, -\pi/4$. Then for the singlet state, since: $\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle = -\hat{\mathfrak{m}} \cdot \hat{\mathfrak{n}} = -\cos \theta$,

Assuming that outcomes of local experiments depend only on the local setup and on the value of a hidden variable λ assigned to the combined system at state preparation, then:

 $|\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle + \langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}'} \rangle| + |\langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}} \rangle - \langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}'} \rangle| \leq 2.$

Violated by quantum mechanical statistics in general. E.g., let $\hat{\mathfrak{m}}, \hat{\mathfrak{m}}', \hat{\mathfrak{n}}, \hat{\mathfrak{n}}'$ lie in the same plane with respective orientations of: $0, \pi/2, \pi/4, -\pi/4$. Then for the singlet state, since: $\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle = -\hat{\mathfrak{m}} \cdot \hat{\mathfrak{n}} = -\cos \theta$,

 $|\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle + \langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}'} \rangle| + |\langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}} \rangle - \langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}'} \rangle| = 2\sqrt{2} \nleq 2.$

Assuming that outcomes of local experiments depend only on the local setup and on the value of a hidden variable λ assigned to the combined system at state preparation, then:

 $|\langle \sigma_{\mathfrak{m}}\otimes \sigma_{\mathfrak{n}}\rangle + \langle \sigma_{\mathfrak{m}}\otimes \sigma_{\mathfrak{n}'}\rangle| + |\langle \sigma_{\mathfrak{m}'}\otimes \sigma_{\mathfrak{n}}\rangle - \langle \sigma_{\mathfrak{m}'}\otimes \sigma_{\mathfrak{n}'}\rangle| \leq 2.$

Violated by quantum mechanical statistics in general. E.g., let $\hat{\mathfrak{m}}, \hat{\mathfrak{m}}', \hat{\mathfrak{n}}, \hat{\mathfrak{n}}'$ lie in the same plane with respective orientations of: $0, \pi/2, \pi/4, -\pi/4$. Then for the singlet state, since: $\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle = -\hat{\mathfrak{m}} \cdot \hat{\mathfrak{n}} = -\cos \theta$,

 $|\langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}} \rangle + \langle \sigma_{\mathfrak{m}} \otimes \sigma_{\mathfrak{n}'} \rangle| + |\langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}} \rangle - \langle \sigma_{\mathfrak{m}'} \otimes \sigma_{\mathfrak{n}'} \rangle| = 2\sqrt{2} \nleq 2.$

But no conflict when \hat{m} and \hat{n} , \hat{m} and \hat{n}' , \hat{m}' and \hat{n} , and \hat{m}' and \hat{n}' are all oriented at angles $\propto \pi/2$.

 \Rightarrow The Pauli measurements (Clifford group).

- Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.
- Kinematics of QM are less restrictive.

Independent of the specifics \neq independent of the dynamics per se.

Gottesman-Knill Theorem:

- Merely possessing an entangled state isn't enough to yield a speedup over classical computation.
- The Clifford group of operations alone are sufficient to generate an entangled state.
- However: You also need to use it effectively

- Constraints imposed by a theoretical framework on our physical description of a system independently of the specifics of its dynamics.
- Kinematics of QM are less restrictive.

Independent of the specifics \neq independent of the dynamics per se.

Gottesman-Knill Theorem:

- Merely possessing an entangled state isn't enough to yield a speedup over classical computation.
- The Clifford group of operations alone are sufficient to generate an entangled state.
- However: You also need to use it effectively
- I.e., you need to perform the right operations (duh!)

Thanks!

Works Cited I

- Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge: Cambridge University Press.
- Cuffaro, M. E. (2017). On the significance of the Gottesman-Knill theorem. The British Journal for the Philosophy of Science, 68, 91–121.
- Hilbert, D., & Ackermann, W. (1928). Principles of Mathematical Logic. Berlin: Springer-Verlag.
- Hughes, R. I. G. (1989). The Structure and Interpretation of Quantum Mechanics. Cambridge, MA.: Harvard University Press.
- Janas, M., Cuffaro, M. E., & Janssen, M. (2022). Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach: Structure and Interpretation. Cham: Springer-Verlag. Foreword by Jeffrey Bub.
- Janssen, M. (2009). Drawing the line between kinematics and dynamics in special relativity. Studies in History and Philosophy of Modern Physics, 40, 26–52.
- Turing, A. M. (1936-7). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society. Second Series, s2-42, 230–265.