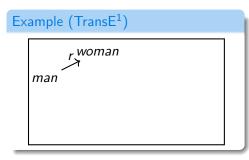

Analogical Proportions: What can you do with them in AI?

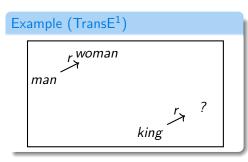
Mena Leemhuis Free University of Bozen-Bolzano

Workshop "Analogies in Physics and Beyond" November 26, 2024



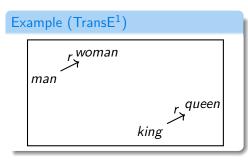
 task: having instances and relations given, predicting new relations (links) between instances

¹Antoine Bordes et al. (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795

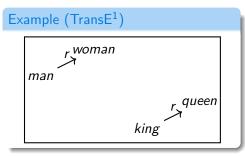

 task: having instances and relations given, predicting new relations (links) between instances

¹Antoine Bordes et al. (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795

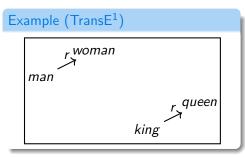
 task: having instances and relations given, predicting new relations (links) between instances


• question: king is male form of ?

¹Antoine Bordes et al. (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795


 task: having instances and relations given, predicting new relations (links) between instances

• question: king is male form of ?


¹Antoine Bordes et al. (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795

- task: having instances and relations given, predicting new relations (links) between instances
- question: king is male form of ?
- man male form of woman leads to king male form of queen
- other writing: "man is to woman as king is to queen"

¹Antoine Bordes et al. (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795

- task: having instances and relations given, predicting new relations (links) between instances
- question: king is male form of ?
- man male form of woman leads to king male form of queen
- other writing: "man is to woman as king is to queen"
- \rightarrow analogical proportions (APs)

¹Antoine Bordes et al. (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795

• e.g., stated by Kant²

²Immanuel Kant (2004). *Immanuel Kant: Prolegomena to Any Future Metaphysics*. Ed. by Gary Hatfield. 2nd ed. Cambridge University Press.

• e.g., stated by Kant²

[Analogy] surely **does not signify**, as the word is usually taken, **an imperfect similarity between two things**,

²Immanuel Kant (2004). Immanuel Kant: Prolegomena to Any Future Metaphysics. Ed. by Gary Hatfield. 2nd ed. Cambridge University Press.

• e.g., stated by Kant²

[Analogy] surely **does not signify**, as the word is usually taken, **an imperfect similarity between two things**,

but rather a perfect similarity between two relations in wholly dissimilar things

²Immanuel Kant (2004). Immanuel Kant: Prolegomena to Any Future Metaphysics. Ed. by Gary Hatfield. 2nd ed. Cambridge University Press.

• e.g., stated by Kant²

[Analogy] surely **does not signify**, as the word is usually taken, **an imperfect similarity between two things**,

but rather a perfect similarity between two relations in wholly dissimilar things

• Therefore:

a is to b as c is to d

²Immanuel Kant (2004). *Immanuel Kant: Prolegomena to Any Future Metaphysics*. Ed. by Gary Hatfield. 2nd ed. Cambridge University Press.

- man : woman :: king : queen
- analogical ratio operator : , analogical proportion operator ::
- also writable as

 a b = c d
 → arithmetic proportion
 resembles classical view on APs (the parallelogram) ³

queen

A brief history of analogical proportions

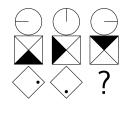
• idea of APs goes back to Aristotle⁴

[...] as old age is to life, so is evening to day. Evening may therefore be called "the old age of the day", and old age, "the evening of life" [...]

- several usage areas
 - language⁵:

look : looked = walk : $x \Rightarrow x =$ walked

- arithmetic proportion: a b = c d
- geometric proportion: a/b = c/d

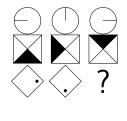

⁴Aristotle (1996). *Poetics*. Penguin Classics.

⁵Yves Lepage (2002). "Analogy and Formal Languages". In: *Electronic Notes in Theoretical Computer Science* 53, pp. 180–191.

Some examples for APs throughout AI

Ravens Progressive Matrices⁶ (RPMs)

- non-verbal test for measuring general human intelligence
- creative or non-creative



⁶John C. Raven (1941). "Standardzation of progressive matrices". In: *British Journal of Medical Psychology* 19.1, pp. 137–150.

Ravens Progressive Matrices⁶ (RPMs)

- non-verbal test for measuring general human intelligence
- creative or non-creative

⁶John C. Raven (1941). "Standardzation of progressive matrices". In: *British Journal of Medical Psychology* 19.1, pp. 137–150.

Image analogies

seminal paper by Hertzmann et al.⁷

ightarrow led to the area of style transfer⁸ and image-to-image translation⁹

⁷Aaron Hertzmann et al. (2001). "Image analogies". In: *Proceedings of the 28th annual conference on Computer graphics and interactive techniques.*

⁸Leon A. Gatys et al. (2016). "Image Style Transfer Using Convolutional Neural Networks". In: 2016 CVPR, pp. 2414–2423.

⁹Phillip Isola et al. (2017). "Image-to-Image Translation with Conditional Adversarial Networks". In: *2017 CVPR*, pp. 5967–5976.

Miller Analogies Test

• Carnivore : Herbivore :: Tiger : (a. lion, b. vegetation)

Miller Analogies Test

• Carnivore : Herbivore :: Tiger : (a. lion, b. vegetation)

• Carnivore : Herbivore :: Tiger : (a. lion, b. vegetation)

All these approaches share the same question regarding APs: for given a, b, c determine d such that a : b :: c : d.

• Carnivore : Herbivore :: Tiger : (a. lion, b. vegetation)

All these approaches share the same question regarding APs: for given a, b, c determine d such that a : b :: c : d.

 analogously other positions of the missing element possible, e.g., Poem: (a. line, b. rhyme, c. stanza, d. sonnet) :: Book : Chapter • Carnivore : Herbivore :: Tiger : (a. lion, b. vegetation)

All these approaches share the same question regarding APs: for given a, b, c determine d such that a : b :: c : d.

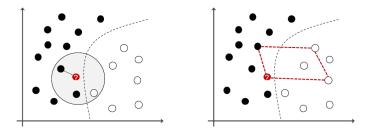
 analogously other positions of the missing element possible, e.g., *Poem*: (a. *line*, b. *rhyme*, c. *stanza*, d. *sonnet*) :: *Book* : *Chapter*

Analogical interpolation

 calculation of the "mean" with continuous analogical proportions (a : x :: x : c with missing x)

• e.g., for the arithmetic proportion:

$$a: x:: x: c \rightarrow a - x = x - c \rightarrow a + c = 2x \rightarrow \frac{a+c}{2} = x$$

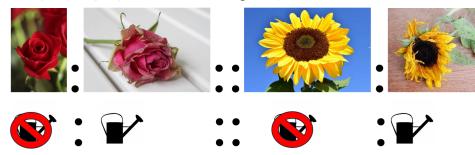

• creation of an "intermediate" item in between two others, e.g.,

man : centaur :: centaur : horse

• usable for enlarging datasets (see, e.g., Bounhas and Prade¹⁰)

¹⁰Myriam Bounhas and Henri Prade (2019). "An analogical interpolation method for enlarging a training dataset". In: *Scalable Uncertainty Management: 13th International Conference, SUM 2019, Compiègne, France, December 16–18, 2019, Proceedings 13.* Springer, pp. 136–152.

Analogy-based explanations



- explanation of classification results with the help of APs by Hüllermeier¹¹
- explanation based on similar elements could be misleading
- explanation with AP allows for applying the relation between known elements to the relation between a known and an unknown one

¹¹Eyke Hüllermeier (2020). "Towards Analogy-Based Explanations in Machine Learning". In: *Modeling Decisions for Artificial Intelligence*, pp. 205–217.

Case-based reasoning

- proposed, e.g., by Lieber et al.¹²:
- given four problems p_a, p_b, p_c, p_d and three solutions s_a, s_b, s_c: Knowing that p_a : p_b :: p_c : p_d leads to the assumption of s_a : s_b :: s_c : s_d and enables finding an s_d

¹² Jean Lieber et al. (2018). "Making the Best of Cases by Approximation, Interpolation and Extrapolation". In: *Case-Based Reasoning Research and Development*, pp. 580–596.

• Quaternary relation of the form "*a* is to *b* as *c* is to *d*"

(R1)

¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

- Quaternary relation of the form "*a* is to *b* as *c* is to *d*"
- Formal notation "a : b :: c : d" suggests other reading "Ratio of a and b is similar to ratio of c and d"

(R2)

(R1)

¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

- Quaternary relation of the form "*a* is to *b* as *c* is to *d*"
- Formal notation "a : b :: c : d" suggests other reading
 "Ratio of a and b is similar to ratio of c and d"

¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

Mena Leemhuis Free University of Bozen-Bolzano

(R1)

(R2)

- Quaternary relation of the form "*a* is to *b* as *c* is to *d*"
- Formal notation "a : b :: c : d" suggests other reading
 "Ratio of a and b is similar to ratio of c and d"

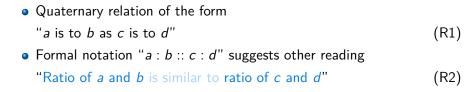
¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

Mena Leemhuis Free University of Bozen-Bolzano

(R1)

(R2)

Quaternary relation of the form *a* is to *b* as *c* is to *d*"


Formal notation "*a* : *b* :: *c* : *d*" suggests other reading

"Ratio of *a* and *b* is similar to ratio of *c* and *d*"

Challenge

How do we get from (R1) to (R2)?

¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

Challenge

How do we get from (R1) to (R2)?

Instance of extension problem for compositionality of the first form¹³

¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

- Quaternary relation of the form
 "a is to b as c is to d"
 (R1)
- Formal notation "a : b :: c : d" suggests other reading
 "Ratio of a and b is similar to ratio of c and d"

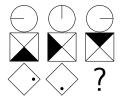
Challenge

How do we get from (R1) to (R2)?

Instance of extension problem for compositionality of the first form¹³

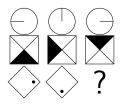
Challenge

How do we get interpretable/explainable APs?

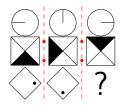

¹³Wilfrid Hodges (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.

Mena Leemhuis Free University of Bozen-Bolzanc

(R2)

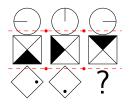

Example - How to solve Raven's Progressive Matrices?

- How could the problem be syntactically interpreted as AP?
- Is the problem actually an AP?
- How to solve the AP?


RPMs as analogical proportions (non-uniqueness – part I)

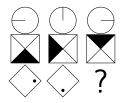
- RPMs can be interpreted as APs (however, this is not always the case)
- definition is not unique

RPMs as analogical proportions (non-uniqueness – part I)


- RPMs can be interpreted as APs (however, this is not always the case)
- definition is not unique

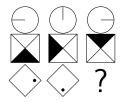
• Analogical ratio between columns

RPMs as analogical proportions (non-uniqueness – part I)


- RPMs can be interpreted as APs (however, this is not always the case)
- definition is not unique

Analogical ratio between rows

RPMs as analogical proportions (non-uniqueness – part I)


- RPMs can be interpreted as APs (however, this is not always the case)
- definition is not unique

• Analogical ratio between figures

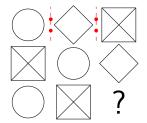
RPMs as analogical proportions (non-uniqueness – part I)


- RPMs can be interpreted as APs (however, this is not always the case)
- definition is not unique

• or even: $(p_1, p_2) : p_3 :: (q_1, q_2) : q_3$

Are RPMs actually analogy problems?

- example dataset: RAVEN¹⁴
- includes, e.g., "distribute three"

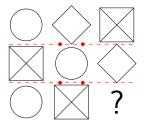

Problem

Not everything based on four components is an AP (or at least not in every interpretation).

¹⁴Chi Zhang et al. (2019). "RAVEN: A Dataset for Relational and Analogical Visual REasoNing". In: *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5312–5322

Are RPMs actually analogy problems?

- example dataset: RAVEN¹⁴
- includes, e.g., "distribute three"

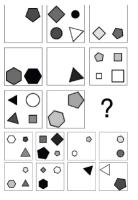

Problem

Not everything based on four components is an AP (or at least not in every interpretation).

¹⁴Chi Zhang et al. (2019). "RAVEN: A Dataset for Relational and Analogical Visual REasoNing". In: *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5312–5322

Are RPMs actually analogy problems?

- example dataset: RAVEN¹⁴
- includes, e.g., "distribute three"


Problem

Not everything based on four components is an AP (or at least not in every interpretation).

¹⁴Chi Zhang et al. (2019). "RAVEN: A Dataset for Relational and Analogical Visual REasoNing". In: *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5312–5322

How to find the best solution (non-uniqueness - part II)

- Which AP is the best one?
- Is there even a single best one?

(from Zhang et al., 2019)

Challenge

How to make sure the "best" AP is found?

Naive approaches for solving RPMs

- e.g., by Zhuo and Kankanhalli¹⁵
 - neural network with incomplete RPM and choices for missing images as input
 - supervised learning based on known analogical proportions as training data
 - leads to acceptable result quality

Problem

- no decomposition
- no explainability
- not even any underlying structure
- ightarrow no usage of analogical proportions!

¹⁵Tao Zhuo and Mohan S. Kankanhalli (2020). "Solving Raven's Progressive Matrices with Neural Networks". In: *ArXiv* abs/2002.01646.

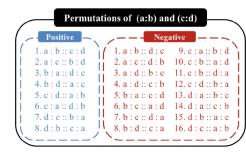
Challenge

A structured definition of APs is needed

- for numbers, the arithmetic or geometric proportion can be used (thus, e.g., a/b=c/d)
- $\rightarrow\,$ How to adapt this structure to the general case of APs between arbitrary elements?

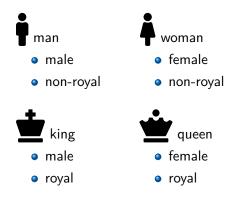
Definition (Basic axioms	(e.g., by	Prade an	nd Richard ¹⁶)))
--------------------------	-----------	----------	-----------------------------	---

For a set of items X, $\forall a, b, c, d \in X$:


• a : b :: a : b	(reflexivity)
• $a:b::c:d ightarrow c:d::a:b$	(symmetry)
• $a:b::c:d \rightarrow a:c::b:d$	(central permutation)

¹⁶Henri Prade and Gilles Richard (2014). "From Analogical Proportion to Logical Proportions: A Survey". In: *Studies in Computational Intelligence*, pp. 217–244

An approach incorporating basic axioms


presented by Ushio et al.17

- not based on RPMs, however, idea easily adaptable
- incorporation of basic axioms in the loss function
- leads to more explicit inspection of APs
- however:
 - no explainability
 - only a slight restriction of possible proportions
 - no explicit meaning of : and ::

¹⁷Asahi Ushio et al. (2021). "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?" In: *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics*, pp. 3609–3624.

- Thus: even more structure needed
- First step: simplifying the problem
- $\rightarrow\,$ considering features

- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸

¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.

- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸

• $\Omega_0 = \{0000, 1111, 0101, 1010, 0011, 1100\}$ (minimal model)

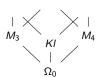
 $\setminus |$

¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.

- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸

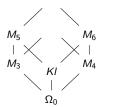
•
$$\Omega_0 = \{0000, 1111, 0101, 1010, 0011, 1100\}$$
 (minimal model)
• $KI = \Omega_0 \cup \{0110, 1001\}$ (Klein's model)

¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.


- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸
 - $\Omega_0 = \{0000, 1111, 0101, 1010, 0011, 1100\}$ (minimal model)
 - $KI = \Omega_0 \cup \{0110, 1001\}$

•
$$M_3 = \Omega_0 \cup \{1110, 1101, 1011, 0111\}$$

•
$$M_4 = \Omega_0 \cup \{0001, 0010, 0100, 1000\}$$

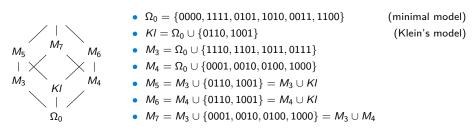

¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.

Mena Leemhuis Free University of Bozen-Bolzano

(minimal model) (Klein's model)

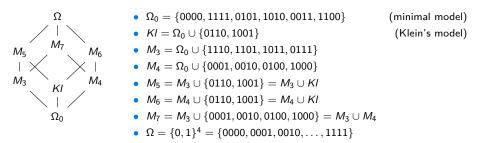
- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸

• $\Omega_0 = \{0000, 1111, 0101, 1010, 0011, 1100\}$ (minimal model) • $KI = \Omega_0 \cup \{0110, 1001\}$ (Klein's model) • $M_3 = \Omega_0 \cup \{1110, 1101, 1011, 0111\}$


•
$$M_4 = \Omega_0 \cup \{0001, 0010, 0100, 1000\}$$

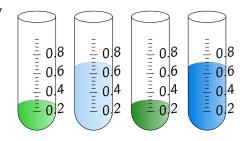
•
$$M_5 = M_3 \cup \{0110, 1001\} = M_3 \cup KI$$

• $M_6 = M_4 \cup \{0110, 1001\} = M_4 \cup KI$


¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.

- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸

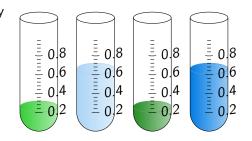
¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.


- *a* : *b* :: *c* : *d* becomes a quaternary Boolean function
- Each such function can be identified with the set of 4-bit vectors with evaluation 1
- Lattice of 8 models of analogical proportions by Prade and Richard¹⁸

¹⁸Henri Prade and Gilles Richard (2018). "Analogical proportions: from equality to inequality". In: *International Journal of Approximate Reasoning* 101, pp. 234–254.

Generalization part I – Fuzziness¹⁹

• $a, b, c, d \in [0, 1]$, therefore fuzzy



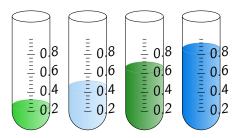
¹⁹Didier Dubois et al. (2016). "Multiple-valued extensions of analogical proportions". In: *Fuzzy Sets and Systems* 292, pp. 193–202.

Generalization part I – Fuzziness¹⁹

a, b, c, d ∈ [0, 1], therefore fuzzy
either conservative, e.g.,

0.2:0.6::0.2:0.6

¹⁹Didier Dubois et al. (2016). "Multiple-valued extensions of analogical proportions". In: *Fuzzy Sets and Systems* 292, pp. 193–202.

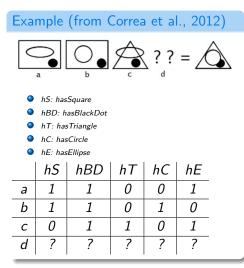

Generalization part I – Fuzziness¹⁹

- $a,b,c,d\in[0,1]$, therefore fuzzy
- either conservative, e.g.,

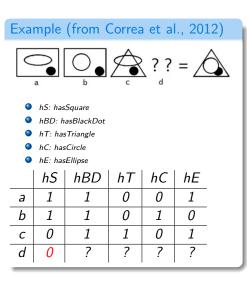
0.2:0.6::0.2:0.6


• or liberal graded, e.g.,

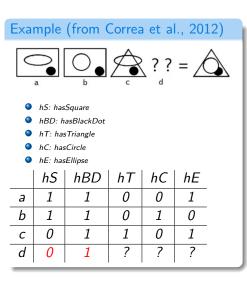
0.2 : 0.4 :: 0.6 : 0.8

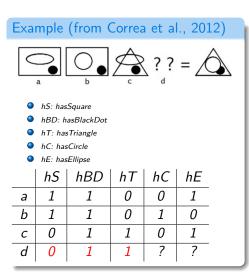

¹⁹Didier Dubois et al. (2016). "Multiple-valued extensions of analogical proportions". In: *Fuzzy Sets and Systems* 292, pp. 193–202.

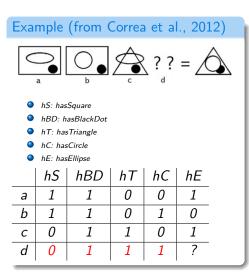
Generalization part II – Boolean vectors

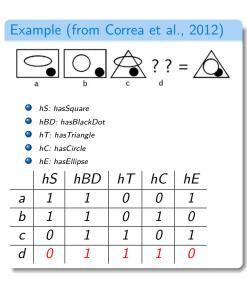


- component-wise extension from X to Xⁿ
- a: b:: c: d iff $\forall i \in \{1, ..., n\}, a_i: b_i:: c_i: d_i$
- also possible in the fuzzy case


- based on feature vectors
- advantage:
 - explainability
- problems:
 - correct annotation of images needed
 - choice of features already incorporates implicit knowledge about analogy
 - normally, analogies are not optimal but noisy
 - \rightarrow feature selection necessary
- → therefore, generalization necessary, abstraction from pure feature vectors


- based on feature vectors
- advantage:
 - explainability
- problems:
 - correct annotation of images needed
 - choice of features already incorporates implicit knowledge about analogy
 - normally, analogies are not optimal but noisy
 - \rightarrow feature selection necessary
- → therefore, generalization necessary, abstraction from pure feature vectors


- based on feature vectors
- advantage:
 - explainability
- problems:
 - correct annotation of images needed
 - choice of features already incorporates implicit knowledge about analogy
 - normally, analogies are not optimal but noisy
 - \rightarrow feature selection necessary
- → therefore, generalization necessary, abstraction from pure feature vectors


- based on feature vectors
- advantage:
 - explainability
- problems:
 - correct annotation of images needed
 - choice of features already incorporates implicit knowledge about analogy
 - normally, analogies are not optimal but noisy
 - \rightarrow feature selection necessary
- → therefore, generalization necessary, abstraction from pure feature vectors

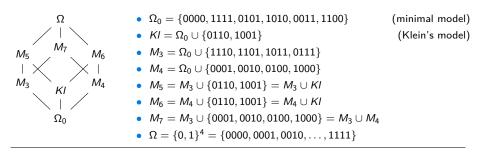
- based on feature vectors
- advantage:
 - explainability
- problems:
 - correct annotation of images needed
 - choice of features already incorporates implicit knowledge about analogy
 - normally, analogies are not optimal but noisy
 - \rightarrow feature selection necessary
- → therefore, generalization necessary, abstraction from pure feature vectors

- based on feature vectors
- advantage:
 - explainability
- problems:
 - correct annotation of images needed
 - choice of features already incorporates implicit knowledge about analogy
 - normally, analogies are not optimal but noisy
 - \rightarrow feature selection necessary
- → therefore, generalization necessary, abstraction from pure feature vectors

Towards a (more general) generalization²⁰

• one way of generalization: examining the underlying rules of each of the models

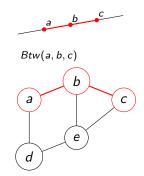
Formally:


- Want to find refined axiomatizations
- For each analogical proportion m find axiom set F_m such that

$$Mod(B_{ax} \cup F_m) = \{m\}$$

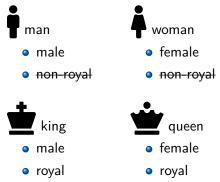
- 2 F_m is simple
- *F_m* is general

²⁰Mena Leemhuis, Diedrich Wolter, et al. (2024). "Decomposing Analogy: A Logic Characterization". In: *Foundations of Information and Knowledge Systems*, pp. 256–274.


Refined axiomatization

F_{Ω0} = {unicity} ∪ {antisymmetry}
unicity: ∀a∀b∀c (a : a :: b : c → b = c)
antisymmetry: {∀a∀b (a : b :: b : a → a = b)}

Betweenness-based view²¹


- creation of a generalized geometrical view of APs
- with the help of betweenness
- more general than arithmetic or geometric proportions

²¹Mena Leemhuis and Özgür L. Özçep (2023). "Analogical Proportions and Betweenness". In: Proceedings of the 9th Workshop on Formal and Cognitive Reasoning, co-located with the 46th German Conference on Artificial Intelligence (KI 2023), pp. 8–19.

Towards a (more general) generalization - variant II

- proposed by Herzig et al.²²(and within a different framework by Antić²³)
- considering APs between formulas with the help of transformation functions
- basic idea: considering three types of feature changes
 - true to false
 - false to true
 - irrelevant

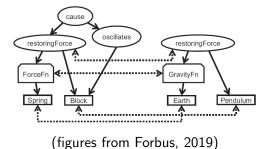
²³Christian Antić (2022). "Analogical proportions". In: Annals of Mathematics and Artificial Intelligence 90.6, pp. 595–644

²²Andreas Herzig et al. (2024). "A Novel View of Analogical Proportion Between Formulas". In: ECAI 2024

Central permutation - intuition

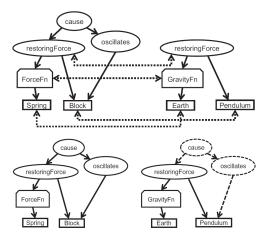
- man:woman::king:queen (based on the relation *male form of*)
- man:king::woman:queen (based on the relation royal form of)
- $\rightarrow\,$ after central permutation, a completely new relation is needed
 - But: problem with domain change:

F1 driver : car :: jockey : horse


VS.

F1 driver : jockey :: car : horse

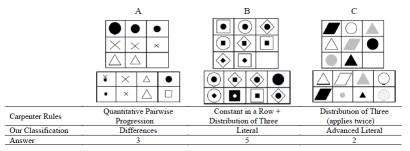
• again, dependent on the framework considered


A different viewpoint – the Structure Mapping Engine

A different viewpoint – the Structure Mapping Engine²⁴

²⁴Brian Falkenhainer et al. (1989). "The structure-mapping engine: Algorithm and examples". In: *Artificial Intelligence* 41.1, pp. 1–63.

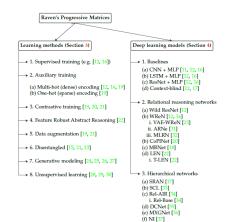
A different viewpoint – the Structure Mapping Engine²⁴



(figures from Forbus, 2019)

²⁴Brian Falkenhainer et al. (1989). "The structure-mapping engine: Algorithm and examples".
 In: Artificial Intelligence 41.1, pp. 1–63.

Solving RPMs with the help of Structure Mapping

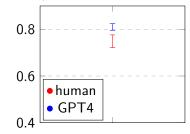

- presented by Lovett et al.²⁵
- creation of pattern of variance based on a strategy for the top two rows
- then comparing a possible third row with the top two rows

²⁵Andrew M. Lovett et al. (2010). "A Structure-Mapping Model of Raven's Progressive Matrices". In: *Proceedings of the Annual Meeting of the Cognitive Science Society*. Vol. 32.

Solving RPMs - conclusion

- RPM's are heavily studied, not only in view of APs
- overview about state-of-the-art approaches, e.g., by Małkiński and Mańdziuk²⁶

²⁶Mikolaj Małkiński and Jacek Mańdziuk (2022). "Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices". In: *ArXiv* abs/2201.12382

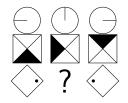

Does ChatGPT solve the issues with APs?

 Study by Webb et al.²⁷about analogical reasoning capabilities of ChatGPT

²⁷Taylor Webb et al. (2023). "Emergent analogical reasoning in large language models". In: *Nature Human Behaviour* 7.9, pp. 1526–1541

Does ChatGPT solve the issues with APs?

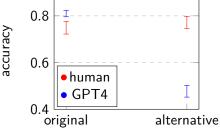
- Study by Webb et al.²⁷about analogical reasoning capabilities of ChatGPT
- results for a number-matrix problem (results from Mitchell, 2024)



accuracy

²⁷Taylor Webb et al. (2023). "Emergent analogical reasoning in large language models". In: *Nature Human Behaviour* 7.9, pp. 1526–1541

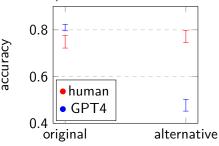
No, it doesn't


 different study on generalized analogical reasoning problems by Lewis and Mitchell²⁸

²⁸Martha Lewis and Melanie Mitchell (2024). "Using Counterfactual Tasks to Evaluate the Generality of Analogical Reasoning in Large Language Models". In: *arXiv*

No, it doesn't

 different study on generalized analogical reasoning problems by Lewis and Mitchell²⁸ results for a number-matrix problem (results from Mitchell, 2024)



²⁸Martha Lewis and Melanie Mitchell (2024). "Using Counterfactual Tasks to Evaluate the Generality of Analogical Reasoning in Large Language Models". In: *arXiv*

No, it doesn't

- different study on generalized analogical reasoning problems by Lewis and Mitchell²⁸
- → being able to solve specific APs is no indicator for general intelligence

 results for a number-matrix problem (results from Mitchell, 2024)

²⁸Martha Lewis and Melanie Mitchell (2024). "Using Counterfactual Tasks to Evaluate the Generality of Analogical Reasoning in Large Language Models". In: *arXiv*

Conclusion – from using APs in AI to using APs for AI

- in this talk focus on
 - solving APs with the help of AI and
 - understanding the underlying structure and formalization of APs
- different, even more important aspect: using AP for abstraction and generalization of AI-approaches to other topics, thus using AP for AI instead of in AI

Bibliography I

- Antić, Christian (2022). "Analogical proportions". In: Annals of Mathematics and Artificial Intelligence 90.6, pp. 595-644.
- Aristotle (1996). Poetics. Penguin Classics.
- Bordes, Antoine, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko (2013). "Translating Embeddings for Modeling Multi-relational Data". In: *NIPS'13*, pp. 2787–2795.
- Bounhas, Myriam and Henri Prade (2019). "An analogical interpolation method for enlarging a training dataset". In: Scalable Uncertainty Management: 13th International Conference, SUM 2019, Compiègne, France, December 16–18, 2019, Proceedings 13. Springer, pp. 136–152.
- Correa, William Fernando, Henri Prade, and Gilles Richard (2012). "When intelligence is just a matter of copying". In: European Conference on Artificial Intelligence.

- Dubois, Didier, Henri Prade, and Gilles Richard (2016). "Multiple-valued extensions of analogical proportions". In: Fuzzy Sets and Systems 292, pp. 193–202.
- Falkenhainer, Brian, Kenneth D. Forbus, and Dedre Gentner (1989). "The structure-mapping engine: Algorithm and examples". In: Artificial Intelligence 41.1, pp. 1–63.
- Forbus, Kenneth D. (2019). Qualitative Representations: How People Reason and Learn about the Continuous World. The MIT Press.
 - Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge (2016). "Image Style Transfer Using Convolutional Neural Networks". In: 2016 CVPR, pp. 2414–2423.

Bibliography II

- Hertzmann, Aaron, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin (2001). "Image analogies". In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques.
- Herzig, Andreas, Emiliano Lorini, and Henri Prade (2024). "A Novel View of Analogical Proportion Between Formulas". In: ECAI 2024.
- Hodges, Wilfrid (2001). "Formal Features of Compositionality". In: *Journal of Logic, Language and Information* 10.1, pp. 7–28.
- Hüllermeier, Eyke (2020). "Towards Analogy-Based Explanations in Machine Learning". In: *Modeling Decisions for Artificial Intelligence*, pp. 205–217.
- Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros (2017). "Image-to-Image Translation with Conditional Adversarial Networks". In: 2017 CVPR, pp. 5967–5976.
- Kant, Immanuel (2004). Immanuel Kant: Prolegomena to Any Future Metaphysics. Ed. by Gary Hatfield. 2nd ed. Cambridge University Press.
- Leemhuis, Mena and Özgür L. Özçep (2023). "Analogical Proportions and Betweenness". In: Proceedings of the 9th Workshop on Formal and Cognitive Reasoning, co-located with the 46th German Conference on Artificial Intelligence (KI 2023), pp. 8–19.
- Leemhuis, Mena, Diedrich Wolter, and Özgür L. Özçep (2024). "Decomposing Analogy: A Logic Characterization". In: Foundations of Information and Knowledge Systems, pp. 256–274.
- Lepage, Yves (2002). "Analogy and Formal Languages". In: *Electronic Notes in Theoretical Computer Science* 53, pp. 180–191.

Bibliography III

- Lewis, Martha and Melanie Mitchell (2024). "Using Counterfactual Tasks to Evaluate the Generality of Analogical Reasoning in Large Language Models". In: arXiv.
- Lieber, Jean, Emmanuel Nauer, Henri Prade, and Gilles Richard (2018). "Making the Best of Cases by Approximation, Interpolation and Extrapolation". In: Case-Based Reasoning Research and Development, pp. 580–596.
 - Lovett, Andrew M., Kenneth D. Forbus, and Jeffrey M. Usher (2010). "A Structure-Mapping Model of Raven's Progressive Matrices". In: *Proceedings of the Annual Meeting of the Cognitive Science Society*. Vol. 32.
 - Małkiński, Mikolaj and Jacek Mańdziuk (2022). "Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices". In: *ArXiv* abs/2201.12382.
 - Mitchell, Melanie (2024). Al's Challenge of Understanding the World. Al Spotlight Seminar. URL: https://www.youtube.com/live/gRJgqSbk71o.

- Prade, Henri and Gilles Richard (2014). "From Analogical Proportion to Logical Proportions: A Survey". In: *Studies in Computational Intelligence*, pp. 217–244.
- (2018). "Analogical proportions: from equality to inequality". In: International Journal of Approximate Reasoning 101, pp. 234–254.
- Raven, John C. (1941). "Standardzation of progressive matrices". In: British Journal of Medical Psychology 19.1, pp. 137–150.
- Rumelhart, David E and Adele A Abrahamson (1973). "A model for analogical reasoning". In: *Cognitive Psychology* 5.1, pp. 1–28.

Bibliography IV

Ushio, Asahi, Luis Espinosa Anke, Steven Schockaert, and Jose Camacho-Collados (2021). "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?" In: *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics*, pp. 3609–3624.

Webb, Taylor, Keith J. Holyoak, and Hongjing Lu (2023). "Emergent analogical reasoning in large language models". In: Nature Human Behaviour 7.9, pp. 1526–1541.

Zhang, Chi, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu (2019). "RAVEN: A Dataset for Relational and Analogical Visual REasoNing". In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5312–5322.

Zhuo, Tao and Mohan S. Kankanhalli (2020). "Solving Raven's Progressive Matrices with Neural Networks". In: ArXiv abs/2002.01646.