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FIG. 3. (Color) (a) Trajectories of a droplet of diameter D =
0.67 mm walking in a circular corral with radius R = 14.3 mm
and depth h0 = 6.6 mm, driven at f = 70 Hz, for which γF = 3.7.
Trajectories of increasing length in the long-path-memory limit
(" = 0.011) are color coded according to droplet speed (mm/s).
(b) Probability distribution of the walking droplet’s position.

eigenmodes with wavelength closest to λF , the fit can be
slightly improved and the zeros in the predicted probability
amplitude disappear. However, this requires the introduction
of additional fitting parameters, namely, the amplitude ratio of
each mode, so for simplicity we compare only to a single mode.
Doing so indicates that the walker’s probability distribution is
well approximated by the amplitude of the linear Faraday wave
mode of the corral.

There are several features of this pilot-wave dynamics
that contribute to the emergence of the coherent wavelike
statistical pattern. In Fig. 4(b) we demonstrate that fluctuations
in the walker’s speed are correlated with its radial position,
as was suggested by the color-coded trajectories presented
in Fig. 3(a). In general, the walker’s speed is lowest at the
locations of maximum amplitude of the fundamental cavity
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FIG. 4. (Color) (a) Histogram of radial position, (b) velocity
variation from the mean ( ¯|v| = 8.66 mm/s), and (c) radial dependence
of the normalized radial velocity (|vR|/|v|). In (a), the minima in the
probability amplitude approximately correspond to maxima in the
walker velocity, maxima in the normalized radial velocity, and zeros
in the amplitude of the fundamental cavity mode (upper curve). The
section A-B represents a radial slice of the cavity’s Faraday mode,
with bright bands indicating local extrema. Averaging windows and
bin widths are fixed at 0.012R. In (c), values of 1 and 0 correspond
to purely radial and azimuthal motion, respectively. (d) Four sample
trajectories extracted from the complete trajectory indicate a tendency
to orbital motion along particular radii. Different colors serve only to
demarcate different trajectories. In all plots, the dashed lines represent
maxima in the amplitude of the fundamental cavity mode.

mode, augmenting the probability amplitude at these radii.
The spatial distribution of the normalized radial velocity is
presented in Fig. 4(c), where we again observe a spatial
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(" = 0.011) are color coded according to droplet speed (mm/s).
(b) Probability distribution of the walking droplet’s position.
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bin widths are fixed at 0.012R. In (c), values of 1 and 0 correspond
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Overview

– Analogy plays a wide variety of roles in the context of physical
theory. Here I want to focus on three examples of the use of
quantum analogies in different methodological contexts.

– I will consider quantum analogies in three particular contexts:
1 Born-Oppenheimer formal heuristic analogies in simple models

for a Timeless Wheeler-DeWitt Cosmology;
2 Bouncing oil-droplets illustrative analogies in Pilot-wave

approaches to Quantum Theory;
3 Caldeira-Leggett physical heuristic analogies in efforts to derive

models for a Dissipative Open Quantum Cosmology.

– In each case I will consider the potential for insight and
confusion within the interpretation of the analogies and try and
draw some general lessons.



Roadmap

1 From Quantum Chemistry to Quantum Cosmology

2 From Bouncing Oil-Droplets to Pilot-wave Quantum Theory

3 From Quantum Dissipation to Open Quantum Cosmology



1. From Quantum Chemistry to Quantum Cosmology





Wheeler-DeWitt Cosmology

– The gravitational Wheeler-DeWitt equation is a
‘semi-mathematical’ expression for wavefunction of the universe
in quantum gravity.

– The equations results from informal application of the Dirac
constraint quantization algorithm to the Hamiltonian
formulation of general relativity.

– Famously the equation does not contain any extrinsic temporal
structure.



Wavepackets in Minisuperspace

Consider the Wheeler-DeWitt quantization of an finite dimensional
symmetry reduced mini-superspace FLRW-type universe with spatial
curvature k, scale factor a, homogeneous scalar field φ with mass m,
and no cosmological constant (Kiefer 1988, 2012):

[ 2
3πm2

p

∂2

∂2α
− ∂2

∂φ2 −
3πm2

p

2
ke4α + m2e6αφ2]ψ(α,φ) = 0 (1)

where α = ln a, and mp is the Planck mass. This corresponds to a
‘frozen’ time independent equation for a single zero energy
eigenstate.



Emergent Temporal Structure

– In order to derive an effective internal temporal structure we
need to be able to separate a degree of freedom that plays the
role of a clock from the other degrees of freedom.

– This requires us to be able to approximately neglect the coupling
between the ‘clock’ degree of freedom and the dynamical degrees
of freedom.

– Kiefer shows that this is possible for the system described by
Equation (1) and the choice of α as the clock variable because the
very large value of mp.



Born-Oppenheimer Cosmology

– For each α we define a reduced Hamiltonian of the form:

Hα = −
∂2

∂φ2 − ke4α + m2e6αφ2 (2)

which is such that

Hαφn(α;φ) = En(α)φn(α;φ). (3)

– It is assumed that each of the n-parameterised families φn(α;φ)
are “eigenfunctions” each with “eigenvalues” En(α), all of which
vary only “adiabatically” with the parameter α.1

1N.b. the scare quotes are due to the fact that a little more work is needed to make
these objects rigorously well-defined, see Jecko 2014).



Born-Oppenheimer Cosmology

– We then make the separation ansatz:

ψ(α,φ) = ∑
n

Cn(α)φn(α,φ) (4)

and insert pack into our full Wheeler-DeWitt Equation (1) and
consider an “orthonormal” scalar product with states φ?l .

– We then neglect terms of the form ∂φn
∂α precisely because the

variation of φn(α;φ) with respect to α is assumed to be zero.
– One can simply check by explicit calculation whether

adiabatically holds once the trial solutions have been found.
Kiefer identifies the regime of validity in terms of the excitation
level n of the reduced eigenvalue problem (3) .



Born-Oppenheimer Approximation

– There is a partial formal analogy between the method used for
solving the Equation (1) and the Born-Oppenheimer method used
in molecular quantum chemistry via a reduced equation of the
form: (

Te + W(xnuc)
)
ψa(xnuc; xelc) = λa(xnuc)ψa(xnuc; xelc), (5)

– In that context, the crucial assumption is that in a stable
molecule the nuclei are approximately localized, in a quantum
state in which their kinetic energy is much smaller than the
electron kinetic energy (though not zero).

– The solutions we are looking for correspond to the energy levels
of the light subsystem being widely separated with respect to the
kinetic energy of the heavy subsystem and this correspond to
considering distinct energy eigenstates for the total system
(very much unlike in WdW cosmology)



Born-Oppenheimer Approximation

x
xnuc

E

λ1(xnuc)

λ3(xnuc)

λ2(xnuc)

– Quantitively this corresponds the gaps between the “eigenvalues”
of the “electronic” part of the wavefunction ψa(xnuc, xelc) being
much greater than the values of nuclear kinetic energy Tnuc.

– From that assumption one can demonstrate that the approximate
validity of the molecular form of the Born-Oppenheimer
separation ansatz and the adiabatic approximation.





Dodgy Analogy?

[Born-Oppenheimer] applies in cases in which heavier subsys-
tems are known to change slowly in time with respect to lighter
subsystems. That is why mass matters. Heavier subsystems
have significantly different characteristic dynamical timescales
- timescales over which “the parameters of the system change
appreciably” - and can be said to be adiabatic, with respect to
the lighter subsystems.



Dodgy Analogy?

Because the BO approximation is so widely and successfully
used, and because it initially seems to be about mass (not
time!), it may be imported into derivations without considering
whether the conditions warrant its use in a new application.
[...] Either the mass scales relevant here are proxies for time
scales or not. If they are then we face circularity; if they are
not, then we have no clear means of assessing whether BO is
even applicable in this situation.



Dodgy Analogy?

Because the BO approximation is so widely and successfully
used, and because it initially seems to be about mass (not
time!), it may be imported into derivations without considering
whether the conditions warrant its use in a new applica-
tion. [...] Either the mass scales relevant here are proxies
for time scales or not. If they are then we face circularity; if
they are not, then we have no clear means of assessing
whether BO is even applicable in this situation.



Claim. The Born-Oppenheimer approximation uses mass
scales as proxies for timescales. Applications of the approx-
imation do not make implicit use of timescales are unjustified.



Three Problems

– First, note that the BO approximation is ‘adiabatic’ in the sense
that ψ changes ‘slowly’ with respect to xnuc, not time. In fact,
both the molecular and Wheeler-DeWitt versions of
Born-Oppenheimer are justified without reference to an extrinsic
time.

– Second, note that the formal structure of the Kiefer’s derivation
is that of an ansatz: a trial form of solution to a differential
equation is assumed and then tested for consistency. Best to
think of the (non-exact) formal analogy with molecular BO as a
heuristic for finding the form of the ansatz.

– Third, the form of criticisms about “warranted use” of a model
conflates formal with physical analogy: the physical justification
of an idealization within a model need not be the same when the
formal structure of the model is modified and reinterpreted
within a different context (cf. Bradley and Thébault 2018).



Lesson 1: Scientists use formal analogies to transfers both
model structure and equation solution heuristics from one con-
text to another. Sometimes they also transfer the intuitive story
used to explain justification of idealizations within the model.
However, the devil is in the formal details and philosophers of
science need to attend to the maths not the simply accompany-
ing it before trying to critical engage with potential justificatory
problems.



2. From Bouncing Oil-Droplets to Pilot-wave Quantum Theory



Bouncing Oil-Droplets

– In 2005, a team in Paris Diderot University led by Yves Couder
and Emmanuel Fort discovered that an oil droplet bouncing on a
vibrating fluid surface can be made to ‘walk’ horizontally across
the surface.

– These ‘walkers’ display a kind of wave-particle duality: the
bouncing droplet is self-propelled by interacting with the surface
waves it creates.



Bouncing Oil-Droplets

– Subsequent experiments from both the team in Paris and an
associated team led by John Bush at MIT have since
demonstrated a range of behaviour that is typically considered to
be quantum.

– For example, single and double slit diffraction and interference,
quantised orbits of bound state pairs, phenomena that look
analogous to quantum tunnelling, Schrödinger evolution of
probabilities, and Zeeman splitting.

– Entanglement is notably absent from this list.



Bouncing Oil-Droplets

– Consider a small, shallow rectangular bath oriented horizontally,
filled with a layer of silicon oil, and parametrically driven from
below by a low frequency generator to vibrate vertically.

– By piercing the fluid surface with a pin and then withdrawing
quickly, a small oil droplet can be created which, due to the
forced vibrations, bounces upon the fluid surface.



The Paris experiments



Walkers

Particle–wave association on a fluid interface 93

(a)

(b)

(d)

(e)

( f )(c)

Figure 5. Six photographs showing the motion of a walker and the travelling wave it emits
on the liquid surface as seen from the side. The photographs cover two forcing periods.
(D = 0.75 mm, µL =20 × 10−3 Pa s, f0 = 80Hz, γm/g = 3.5).

Figure 6. Sketch of the motion of a walker and of its interaction with the wave it emits. Note
the Doppler shifts of the waves emitted forwards and backwards. For simplicity the droplet
velocity is shown larger than actually observed. The waves are drawn of constant amplitude,
which is not realistic: in reality the amplitude is strongly modulated in time by the forcing (see
figure 5). They also decay with the distance to the source.

superposition of waves generated by a source that is slightly displaced at each jump.
For very fast walkers this creates a Doppler effect and the wavelength is reduced
ahead of the moving drop and increased behind. Owing to these frequency shifts,
the parametric forcing becomes less effective and the waves emitted forwards and
backwards by a walker have weaker amplitudes than those emitted laterally (figure 4).

Each time the drop hits the surface a new dip forms, shifted
from the trough that would have been formed by the evolution
of the previous wave-packet. The resulting wave is thus the
superposition of waves generated by a source that is slightly
displaced at each jump. (Protière et al. 2006, p.92)



From path memory to pilot-wave dynamics

	
  
Figure 2. Two measured trajectories of single droplets passing through the slit. The similar
initial conditions generate very different trajectories.

observed before the slit crossing and no common diffracted wave is observed behind it. Instead,
the droplet is seen to be at the centre of a wave packet with a complex and constantly evolving
structure (Fig. 3). The nature of this wave packet is now well-understood and described in Fort
et al.[6].

The topography of the liquid surface is determined by the superposition of circular standing
waves centred on the positions of the past bounces of the droplet. The global wave-field thus
has an interference structure that contains a memory of the particle’s recent trajectory. This
is what we have called [6,7] the “wave-mediated path-memory” of the walker. The horizontal
motion of the droplet is driven iteratively, bounce after bounce, by its coupling to this wave. At
each collision with the interface the drop undergoes a damping due to viscous friction but it is
simultaneously given a momentum increment by its shock with the slanted oscillating surface.
The direction of the kick results from the local slope of the interface at the point of impact (see
Fig. 4). The resulting velocity of the drop is thus :

m
dri
dt
∝ ∇ζ(ri, ti) (2)

where m is the mass of the droplet, ri its position in the plane at the collision of order i and
ζ(ri, ti) the height of the liquid interface in ri at time ti.
This path memory model retains all the dynamical behaviour of the experimental walker. Its
numerical implementation is described in detail in ref. [6,7]. It accounts for the spontaneous
motion of the droplet as well as for the structure of the resulting pilot-wave field. It was used
in ref. [4] to investigate the diffraction of walkers. Figure 5 shows the computed trajectories of
individual walkers impinging on the slit and coupled to waves that have a large path memory.
The individual trajectories (Fig. 5) confirm the main characteristics observed in the experiment.
- The droplets are deviated long before they reach the slit. Since the propagative front of the
wave field moves faster than the droplet, it has an echo-location function. The standing Faraday
waves that it generates contain information on the shape of the boundaries.
- The complexity of the trajectories in the region of the slit leads to their divergence. Droplets
having very similar initial trajectories far from the slit can undergo different deviations. This

EmerQuM 11: Emergent Quantum Mechanics 2011 IOP Publishing
Journal of Physics: Conference Series 361 (2012) 012001 doi:10.1088/1742-6596/361/1/012001

4

This interplay between the droplet motion and its associated
wave field makes it a macroscopic implementation of a pilot-
wave dynamics. ( Couder and Fort 2012, p.2)
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FIG. 3. (Color) (a) Trajectories of a droplet of diameter D =
0.67 mm walking in a circular corral with radius R = 14.3 mm
and depth h0 = 6.6 mm, driven at f = 70 Hz, for which γF = 3.7.
Trajectories of increasing length in the long-path-memory limit
(� = 0.011) are color coded according to droplet speed (mm/s).
(b) Probability distribution of the walking droplet’s position.

eigenmodes with wavelength closest to λF , the fit can be
slightly improved and the zeros in the predicted probability
amplitude disappear. However, this requires the introduction
of additional fitting parameters, namely, the amplitude ratio of
each mode, so for simplicity we compare only to a single mode.
Doing so indicates that the walker’s probability distribution is
well approximated by the amplitude of the linear Faraday wave
mode of the corral.

There are several features of this pilot-wave dynamics
that contribute to the emergence of the coherent wavelike
statistical pattern. In Fig. 4(b) we demonstrate that fluctuations
in the walker’s speed are correlated with its radial position,
as was suggested by the color-coded trajectories presented
in Fig. 3(a). In general, the walker’s speed is lowest at the
locations of maximum amplitude of the fundamental cavity
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FIG. 4. (Color) (a) Histogram of radial position, (b) velocity
variation from the mean ( ¯|v| = 8.66 mm/s), and (c) radial dependence
of the normalized radial velocity (|vR|/|v|). In (a), the minima in the
probability amplitude approximately correspond to maxima in the
walker velocity, maxima in the normalized radial velocity, and zeros
in the amplitude of the fundamental cavity mode (upper curve). The
section A-B represents a radial slice of the cavity’s Faraday mode,
with bright bands indicating local extrema. Averaging windows and
bin widths are fixed at 0.012R. In (c), values of 1 and 0 correspond
to purely radial and azimuthal motion, respectively. (d) Four sample
trajectories extracted from the complete trajectory indicate a tendency
to orbital motion along particular radii. Different colors serve only to
demarcate different trajectories. In all plots, the dashed lines represent
maxima in the amplitude of the fundamental cavity mode.

mode, augmenting the probability amplitude at these radii.
The spatial distribution of the normalized radial velocity is
presented in Fig. 4(c), where we again observe a spatial
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eigenmodes with wavelength closest to λF , the fit can be
slightly improved and the zeros in the predicted probability
amplitude disappear. However, this requires the introduction
of additional fitting parameters, namely, the amplitude ratio of
each mode, so for simplicity we compare only to a single mode.
Doing so indicates that the walker’s probability distribution is
well approximated by the amplitude of the linear Faraday wave
mode of the corral.

There are several features of this pilot-wave dynamics
that contribute to the emergence of the coherent wavelike
statistical pattern. In Fig. 4(b) we demonstrate that fluctuations
in the walker’s speed are correlated with its radial position,
as was suggested by the color-coded trajectories presented
in Fig. 3(a). In general, the walker’s speed is lowest at the
locations of maximum amplitude of the fundamental cavity
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FIG. 4. (Color) (a) Histogram of radial position, (b) velocity
variation from the mean ( ¯|v| = 8.66 mm/s), and (c) radial dependence
of the normalized radial velocity (|vR|/|v|). In (a), the minima in the
probability amplitude approximately correspond to maxima in the
walker velocity, maxima in the normalized radial velocity, and zeros
in the amplitude of the fundamental cavity mode (upper curve). The
section A-B represents a radial slice of the cavity’s Faraday mode,
with bright bands indicating local extrema. Averaging windows and
bin widths are fixed at 0.012R. In (c), values of 1 and 0 correspond
to purely radial and azimuthal motion, respectively. (d) Four sample
trajectories extracted from the complete trajectory indicate a tendency
to orbital motion along particular radii. Different colors serve only to
demarcate different trajectories. In all plots, the dashed lines represent
maxima in the amplitude of the fundamental cavity mode.

mode, augmenting the probability amplitude at these radii.
The spatial distribution of the normalized radial velocity is
presented in Fig. 4(c), where we again observe a spatial
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We can thus understand the probability distribution as being a
manifestation of the characteristics of the underlying trajecto-
ries. In the confined circular geometry, the pilot-wave dynam-
ics tends to drive the walker along circular orbits with radii
corresponding to maxima of the cavity mode amplitude ( Harris
et al. (2013): p.011001-4)



What is going on?

– To explain this correspondence it has been variously suggested
that the fluid mechanical system provides a single-particle
classical model of de Broglie’s idiosyncratic ‘double solution’ pilot
wave theory of quantum mechanics

– Borghesi (2017) has constructed a classical fluid dynamical
model for the walker system and shown that there is a partial
isomorphism between structural equations describing the
concretion and elastic medium the model and the u-waves in de
Broglie’s pilot wave theory.

– Note, however, that this this partial isomorphism establishes a
correspondence between empirical terms in Borghesi’s model and
key extra-empirical terms in de Broglie’s pilot wave theory,
including the quantum phase and the pilot wave itself.



Illustration vs Simulation

– Analogue illustration, unlike analogue simulation, is not a form
of ‘material surrogacy’, in which source empirical phenomena in
a system of one kind can be understood as ‘standing in for’ target
phenomena in a system of another kind.

– Rather, analogue illustration leverages a correspondence
between certain empirical phenomena displayed by a source
system and aspects of the ontology of a target system.



Illustration vs Simulation

– On the one hand, this limits the potential inferential power of
analogue illustrations, but, on the other, it widens their potential
inferential scope.

– In particular, through analogue illustration we can learn, in the
sense of gaining how-possibly understanding, about the putative
ontology of a target system via an experiment (cf. Reutlinger et
al., 2017).



Lesson 2: The walker experiments do not give empirical sup-
port of any kind for the pilot-wave interpretation of quantum
theory. Rather they are best understood as analogue illustra-
tions of certain aspects of the ontology of the theory. As such,
their value is principally in terms of mediating how-possibly
understanding of phenomena such as wave-particle duality.
In this regard analogue illustrations function much like a ma-
terial counterpart of toy models.



3. From Quantum Dissipation to Open Quantum Cosmology



Analogy is one of the cognitive strategies available for creative
discovery from which scientific models result (Bailer-Jones
(2009, p.56)



Physical Heuristic Analogies

– In our examples so far we have considered the use of a formal
analogy to transfers equation solution heuristics from one
context to another and the use of an analogue illustration to gain
understanding of the ontology of a theory.

– The final example of an active use of analogy in science I want to
consider is in the context of a physical analogy being used as a
heuristic for finding a new approach to modelling cosmology as
an open system.



The Universe Cannot be Open!?

The idea of the universe as analogous to an open quantum system
seems absurd: open systems are standardly understood to be
coupled to an environment to which they dissipate entanglement or
energy. The universe has no environment?!



Classical Dissipation

– The second contact Hamilton equation for a damped oscillator is:

ṗi = −∂V
dqi − γpi (6)

– Contact dynamics allows us to give a general definition of
autonomous classical open systems in terms of measure
compression.



Quantum Dissipation

Caldeira-Leggett model:

i
∂ρ̂

∂t
= [ĤS , ρ̂] +

η

2m
[q̂,{ p̂, ρ̂}]− iηkBT[q̂, [q̂, ρ̂]] (7)

The first term describes the standard unitary dynamics, the second
term describes ‘quantum friction’, the third one describes
decoherence.



Caldeira-Leggett Model

It is instructive to consider the generalised Ehrenfest type relation for
momentum that can be derived for the CL model:

d
dt
〈 p̂〉 = −

〈 d
dq

V(q̂)
〉
− η

m
〈 p̂〉 (8)

This equates to a frictional ‘force’ term that matches the second
contact Hamilton equation for a damped oscillator.



Hubble Friction

The Friedmann equations in scale-invariant variables re-describe the
expansion of space as the evolution of matter with a frictional force
with the formal structure of a contact system with measure
compression (energy constrained to zero).



Open Quantum Cosmology

– Cosmological Caldeira-Leggett:

ih̄
dρ

dt
= [Π̂2 + V(φ̂),ρ]− i

γ

h̄
[Π̂,{−Π̂h, ρ̂}] (9)

where h =
√

Π̂2 + V(φ̂).

– The generalised Ehrenfest type relations for this equation match
the scale-invariant version of the Friedmann equations.



Lesson 3: The heuristics of a physical analogy can be surpris-
ing when the role of key concepts, such as dissipation, changes
between contexts. The idea of open systems quantum cosmol-
ogy need not be nonsensical since although there may be no
environment in quantum cosmology dissipation can be made
sense of in different terms.



– Finding Time for Wheeler-DeWitt Cosmology, with Nick Huggett,
2023 https://philsci-archive.pitt.edu/22669/

– What can bouncing oil droplets tell us about quantum
mechanics?, with P. Evans, European Journal for Philosophy of
Science 10(49) 2020. https://philsci-archive.pitt.edu/17336/

– Open Systems and Autonomy, with James Ladyman 2024
https://philsci-archive.pitt.edu/23701/
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